Brainy: A Machine Learning Library

Michal Konkol

Natural Language Processing Group
Department of Computer Science and Engineering
University of West Bohemia
Univerzitni 8
306 14 Plzen
Czech Republic
nlp.kiv.zcu.cz
konkol@kiv.zcu.cz

Abstract. Brainy is a newly created cross-platform machine learning library
written in Java. It defines interfaces for common types of machine learning tasks
and implementations of the most popular algorithms. Brainy utilizes a complex
mathematical infrastructure which is also part of the library. The main difference
compared to other ML libraries is the sophisticated system for feature definition
and management. The design of the library is focused on efficiency, reliability,
extensibility and simple usage. Brainy has been extensively used for research as
well as commercial projects for major companies in Czech Republic and USA.
Brainy is released under the GPL license and freely available from the project
web page.

Keywords: Machine learning, software library.

1 Introduction

Machine learning is a branch of artificial intelligence which studies computer systems
with the ability to learn without being explicitly programmed. Such systems are very
different from standard rule-based systems where the knowledge is hand coded by hu-
mans. The machine learning systems have their strengths and weaknesses. On one hand,
they can handle very complex problems, that are intractable by standard rule-based sys-
tems. On the other hand, the knowledge learned by machine learning system is almost
never perfect and the rule-based systems can perform better for simple problems.

Machine learning is used for wide variety of tasks all around us. These tasks include
natural language processing, weather forecasting, stock value forecasting, earthquake
prediction, medicine decision making and many others. Generally, machine learning
can be used for any complex problem where no other solution performs well.

There exist different paradigms of learning. The basic one is supervised learning.
In supervised learning the training data are provided along with annotations which are
telling the algorithm the right answers. The algorithm then tries to generalize the knowl-
edge acquired from training data and also to still give the maximum of good answers.
When the algorithm generalizes badly, it can often reproduce right answers for training
data, but performs poorly for unseen data.

2 Michal Konkol

The second important paradigm is unsupervised learning. In unsupervised learning,
the algorithm receives only data (without answers) and tries to find patterns in the data.
There exists more learning paradigms, but the majority of tasks uses the presented two.

Machine learning represents a wide variety of algorithms. We will briefly describe
the basic groups of these algorithms. The first group of algorithms is the regression
group. Regression algorithms are designed for problems where the predicted variable
is real valued. It analyzes the training data where the values are already annotated and
then tries to find optimal values for unseen data. For example in the weather forecasting
domain this algorithm can be used to predict the precipitation based on weather radar
information.

A classification group is for problems where the output is categorical. These al-
gorithms require some examples for each category and tries to find optimal decision
boundary between these categories. An example from weather domain can be classi-
fication of days into sunny and cloudy categories. Another group closely related to
classification is sequence labelling. It addresses problems where the category of the
classified object depends not only on the data for this object but also on categories as-
signed to objects in its vicinity. This happens for example in industry where defective
products are often produced in short series.

Another important group is clustering. Clustering can be seen as unsupervised learn-
ing version of classification. It analyzes data and assigns them to one of categories.
Some algorithms need a predefined number of categories, some can choose the number
of categories based on the data. Clustering can be used for example to automatically
categorize news articles by topic.

All machine learning algorithms use the data to learn. The data for different do-
mains are completely different and a universal representation have to be used. Machine
learning introduces an abstraction called feature for this purpose. Each feature repre-
sents one property of the data object and translates it into numerical form. All features
extracted from a data object form a feature vector. Features are often defined by fea-
ture templates (often also called features). One feature template is often responsible
for many features. A typical feature template used in the natural language processing
domain is a word and features are words themselves as “the” or “day”. The group of
features (or feature templates) used for some task is called feature set.

Two groups of machine learning algorithms are specialized on choosing optimal
feature set. Feature selection takes features defined by user as input and removes fea-
tures with smallest impact on the result. Feature set can be often heavily reduced with-
out loosing performance. Feature induction (sometimes extraction or selection) also
starts with features from user, but it also tries to create combinations of these features
and tries to select an optimal set. This task is much harder than simple feature selection,
because the number of features can easily reach million and the number of combinations
is huge.

Training of machine learning algorithms often requires a lot of time and resources.
The training algorithms are often very sophisticated and are based on linear algebra,
statistics and optimization. It is necessary to use highly optimized mathematical al-
gorithms to reduce required resources. A naive implementation usually makes even
smaller problems intractable.

Brainy: A Machine Learning Library 3

Brainy deals with all presented tasks and problems. The following sections give a
basic overview of Brainy rather than an in-depth description. It should provide enough
information to decide, whether Brainy is interesting for you.

2 Architecture

The framework consists of three main components — feature management, machine
learning algorithms and mathematics (mainly statistics, optimization and linear alge-
bra). We will briefly describe the interactions of the components and then each compo-
nent more deeply.

Each machine learning task needs some data to learn. These data are usually rep-
resented as feature vectors. For this purpose, we have defined interfaces for matrices
and vectors. These matrices and vectors serves as unified data interface between the
machine learning and the feature management parts of the library. The feature man-
agement part defines interfaces for features and feature set. The machine learning part
processes the data represented as vectors and matrices. It is heavily supported by the
mathematical infrastructure. An overview is given by fig. 1.

Fig. 1. Main components of the library.

Feature Processing
FeatureSet XML Feature
Linear Algebra Math
ML algorithms
Feature
Classification Selection Optimization
Clustering Regression Statistics

2.1 Feature management

The feature management is often overlooked in machine learning libraries. In our li-
brary we define interfaces for both features and feature set. The Feature interface
represents a feature template and provides well-defined methods for changing data rep-
resentation from user defined objects to numerical values. Each feature template then
returns a vector indexed from O to n, where n; is number of features defined on the
template. Therefore the features are independent of each other.

4 Michal Konkol

The FeatureSet class manages the features. It processes all the user objects,
combines the vectors from individual features into the final feature vector and creates a
matrix representing the data from feature vectors. The feature set can be defined by an
XML file. The file contains a list of features and their parametrization. This allows fast
experimentation with multiple feature sets without changing the source code. It also
helps you to keep track of your experiments and reproduce the results.

2.2 Mathematical infrastructure

The first part of the mathematical infrastructure is linear algebra. The machine learning
algorithms can be often vectorized — transformed into vectors and matrices combined
using standard linear algebra operations. We have defined interfaces for matrices and
vectors. Different implementations of matrices allow very efficient execution, e.g. us-
ing sparse/dense matrices with different implementations, running in parallel, etc. It is
easy to extend the library with new algorithms thanks to the support of linear algebra
primitives.

Optimization algorithms form another part. We have defined interfaces for mathe-
matical functions (e.g. Function for simple function, Di f fFunction for differen-
tiable function) and a Minimizer interface. For new method you only need to im-
plement the cost function and use one of our implementations of Minimizer. We are
usually using L-BFGS minimizer or some non-trivial version of gradient descent.

We have implemented interfaces for more mathematical primitives (e.g. random
distributions, distances, similarities, etc.) and provided implementations for commonly
used variants.

2.3 Machine learning algorithms

The main part of machine learning library are, of coarse, machine learning algorithms.
We have defined interfaces for all major tasks — regression, classification, sequence la-
belling and clustering. We will describe these interfaces and their usage in section 3.
All algorithms of the same type share the same interface and that allows easy experi-
mentation with different algorithms and their combinations.

Fig. 2 shows detailed view of the machine learning component with listing of se-
lected algorithms.

3 User view

In this section, we will briefly describe the library from the user view. For detailed
description see the tutorial on the project website (sec. 6).

First step for any machine learning task is preparation of data. Our machine learn-
ing library supports two approaches. The machine learning algorithms work solely with
matrices and vectors. The first possibility is to directly create these matrices using any
way that fits your needs. The second possibility is to use our feature management sys-
tem.

Brainy: A Machine Learning Library 5

Fig. 2. The machine learning component.

Machine Learning

Classification Sequential Classification
Maximum entropy Conditional random fields
Naive Bayes Hidden Markov models

Support vector machines

Clustering Regression
K-Means Linear regression

3.1 Feature management

The feature management system supports easy experimentation with features. The ba-
sic interface is Feature which represents a feature template. With feature template
we mean set of very similar features with the same semantics, e.g. in the field of natu-
ral language processing the feature template ‘word’ consists of features for individual
words (current word is ‘wood’, ‘steel’, etc.).

The Feature interface has two important methods. The t rain () method is used
for training the feature from training data, e.g. the previously mentioned ‘word’ feature
needs to learn the words. The ext ractFeature () method translates the user objects
to numeric representation.

After defining features you can create a feature set (class FeatureSet). The fea-
ture set can be created programatically or by XML configuration file. The XML file
is very useful for testing multiple feature sets. Listing 1 shows both ways of feature
set creation and its usage. Note that FeatureSet class is generic. The generic type
represents the object you want to classify — in our example the String[] represents
a document. The trainingObjects object is a list-like structure with objects for
classification.

Listing 1. Creation of feature sets.

FeatureSet<String[]> set = new FeatureSet<String[] >();
set.add (new WordFeature (0));
set.train(trainingObjects);

set = new FeatureSet<String[]>("myFeatureSet.xml”);
set.train (trainingObjects);

DoubleMatrix data = set.getData(trainingObjects);
IntVector labels = set.getLabels(trainingObjects);

6 Michal Konkol

3.2 Classification

The schema of classification task is on fig. 3. After data preparation a classifier trainer
object is created. This object represents a method for training of chosen classifier, e.g.
maximum entropy [1] classifier can be trained by L-BFGS [2] method. The trainer
object then returns a classifier object, which is ready to classify unseen data.

Fig. 3. The classification task.

Training

data Feature Training
Extraction phase

—> . -- -> Featute Selection |- o
ont. / : ';est
-- Feature Induction I phase
—————— I ’.. 1

|nput | * q Trainer | Output

data o _______i______l data

@ q q Classifier q

Listing 2 shows an example code for classifier training and usage. We have used a
maximum entropy classifier, where the MaxEnt LBFGSTrainer is the trainer class
and MaxEnt is the classifier class. As we said previously the data can be prepared
in multiple ways. Before classification you need to create Results object, which is
filled by results of the classifier. This allows you to reuse this object, e.g. when you are
searching for optimal parameters of the classifier.

Listing 2. Creation and usage of maximum entropy classifier.
DoubleMatrix trainingData = ...;
IntVector traininglLabels = ...;
SupervisedClassifierTrainer trainer = new MaxEntLBFGSTrainer ();
Classifier classifier = trainer.train(trainingData ,
traininglLabels , numLabels);

DoubleMatrix data = ...;

Results results = BasicResults.create (numLabels, data.columns ());
classifier.classify (data, results);

3.3 Clustering

The scheme for clustering is on fig. 4. The objects used for clustering have different
semantics. The clustering method is represented by single object which implements

Brainy: A Machine Learning Library 7

the Clustering interface, e.g. object of K-Means class. This object clusters the
data. Some methods also support an optional function — they return an object which
represents a trained version of the clustering method. This object also implements the
Clustering interface and is able to add additional (previously unseen) objects to the
previously created clusters without the need of clustering all data objects from start. In
the case of K-Means [3] the trained version computes the distances between additional
vectors and centroids and adds them to the cluster with shortest distance.

Fig. 4. The clustering task.

Data Feature

Extraction
— | - = = P | Featute Selection
‘. Opt.

/
-- Feature Induction Clusters

. i Creates
Other . —> Clustering _>

Data I

v /
—_— =P | Trained Clustering Fxteds

An example of clustering can be seen on listing 3.

Listing 3. Creation and usage of K-Means clustering.

DoubleMatrix data = ...;
Clustering kmeans = new KMeans(means.length ,
new EuclideanDistance ());
Clustering trainedKmeans = kmeans. cluster (data, results);

DoubleMatrix otherData = ...;
trainedKmeans . cluster (data, results);

4 Related systems

In this section we will briefly describe libraries and frameworks with similar focus. We
have done some artificial tests on them and compared with our library. The tests had
almost the same results for all libraries (comparing the same algorithms). These tests
represents only simple problems. Their results prove that the libraries are not faulty and
their performance is more or less the same for simple problems, but do not show well the
differences between algorithms on real and more complex problems. The proper way

8 Michal Konkol

of comparing these libraries would be testing on multiple real problems from multiple
fields, but it is out of the scope of this article.

The most similar libraries are Mallet' [4] and Java-ML? [5]. They are both machine
learning libraries written in Java. The biggest difference between these libraries and
our library is the architecture. The interfaces for machine learning tasks are different.
They heavily differ in the way they prepare and represent the data. These differences in
architecture forces the user to use different concepts and the appropriate library should
be chosen based on the task, compatibility with other systems and personal preference.

Weka? [6] and Apache Mahout* are another machine learning frameworks worth
mentioning, but they differ in purpose compared to the previously mentioned libraries.
The Weka itself states “Weka is a collection of machine learning algorithms for data
mining tasks.”, so it is not primarily intended as a general machine learning library. The
standard usage is through GUI and CLI, while our library provides only API. The Weka
framework generally uses higher level of abstraction then our library.

Apache Mahout is focused on very big problems. The framework is based on the
Apache Hadoop framework for distributed computing. Our library can be parallelized
to some extent, but it is limited by one cluster. Hadoop provides much more complex
infrastructure for distributed computing then our library, e.g. node error recovery, etc.
So the main difference is the basic concept or targets of the library.

5 Verification

All algorithms provided by the library are tested on very simple machine learning tasks
using the jUnit framework. The library is also used by students for assignments and
theses.

The library was extensively used for research by the Natural Language Processing
Group at University of West Bohemia. So far, the library was used in two main direc-
tions of research — named entity recognition (NER) and sentiment analysis (SA).

The NER tool is based on Brainy and GATE?. The first version of our NER system
was based on the maximum entropy classifier [7]. Current version is based on condi-
tional random fields and is a state-of-the-art method for Czech [8]. We are working on
multilingual NER, which has already achieved exceptional results. The NER tool is cur-
rently tested by two major companies in Czech republic — Seznam.cz, a.s® (a majority
search engine) and CTK” (national news agency established by law).

Our sentiment analysis research is also heavily based on Brainy. The research was
focused on social media SA [9], semantic spaces in SA [10], or a new model for SA
based on the target context [11].

! http://mallet.cs.umass.edu

2 http://java-ml.sourceforge.net

3 http://www.cs.waikato.ac.nz/ml/weka/
* http://mahout.apache.org

3 http://gate.ac.uk

® http://www.seznam.cz

7 http://www.ctk.eu

Brainy: A Machine Learning Library 9

Brainy is also used in a commercial project for Owen Software Ltd. and in the High
Precision Stemmer®, which is a unsupervised language-independent stemmer.

This section shows that the library can achieve state-of-the-art results in multiple
research fields and it can be used for commercial projects.

6 Availability and requirements

The library is written in Java and thus should be usable on any platform with Java
Virtual Machine. The minimal version of Java is 1.6. It is necessary to use the 64 bit
version of Java for non-trivial applications because of memory requirements.

The library is available from the project web page’. It is released under the GPLv3'?
license.

7 Conclusion and future work

We have implemented a Java machine learning library called Brainy. Brainy was already
used in research and commercial projects. It is released under GPL license.

The library provides many advanced algorithms, data structures and utilities. The
infrastructure of the library allows quick implementation of new algorithms with stan-
dard interfaces. The library is designed for experimentation as well as for production
systems.

The library is under active development. In the near future we are going to add
our own implementation of various types of neural networks and graphical models.
We also want to create a framework for standard machine learning pipelines and their
configuration.

Acknowledgements

This work was supported by grant no. SGS-2013-029 Advanced computing and infor-
mation systems, by the European Regional Development Fund (ERDF). Access to the
MetaCentrum computing facilities provided under the program ‘“Projects of Large In-
frastructure for Research, Development, and Innovations” LM2010005, funded by the
Ministry of Education, Youth, and Sports of the Czech Republic, is highly appreciated.

References

1. Berger, A.L., Pietra, VJ.D., Pietra, S.A.D.: A maximum entropy approach to natural lan-
guage processing. Comput. Linguist. 22 (March 1996) 39-71

2. Malouf, R.: A comparison of algorithms for maximum entropy parameter estimation. In:
Proceedings of the 6th Conference on Natural Language Learning - Volume 20. COLING-02,
Stroudsburg, PA, USA, Association for Computational Linguistics (2002) 1-7

® http://liks.fav.zcu.cz/HPS/
® home.zcu.cz/~konkol/brainy.php
10 http://www.gnu.org/licenses/gpl-3.0-standalone.html

10

10.

11.

Michal Konkol

. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theor. 28(2) (September

2006) 129-137

. McCallum, A.K.: Mallet: A machine learning for language toolkit. (2002)
. Abeel, T., Van de Peer, Y., Saeys, Y.: Java-ml: A machine learning library. J. Mach. Learn.

Res. 10 (June 2009) 931-934

. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data

mining software: An update. SIGKDD Explor. Newsl. 11(1) (November 2009) 10-18

. Konkol, M., Konopik, M.: Maximum entropy named entity recognition for czech language.

In Habernal, 1., Matousek, V., eds.: Text, Speech and Dialogue. Volume 6836 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2011) 203-210

. Konkol, M., Konopik, M.: Crf-based czech named entity recognizer and consolidation of

czech ner research. In Habernal, 1., Matousek, V., eds.: Text, Speech and Dialogue. Volume
8082 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2013) 153-160

. Habernal, 1., Ptacek, T., Steinberger, J.: Sentiment analysis in czech social media using

supervised machine learning. In: Proceedings of the 4th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Media Analysis, Atlanta, Georgia, Associa-
tion for Computational Linguistics (June 2013) 65-74

Habernal, 1., Brychcin, T.: Semantic spaces for sentiment analysis. In Habernal, 1., Matousek,
V., eds.: Text, Speech, and Dialogue. Volume 8082 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2013) 484-491

Brychein, T., Habernal, I.: Unsupervised improving of sentiment analysis using global target
context. In: Proceedings of the International Conference Recent Advances in Natural Lan-
guage Processing RANLP 2013, Hissar, Bulgaria, INCOMA Ltd. Shoumen, BULGARIA
(September 2013) 122-128

