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Abstract. This paper explores the integration of pretrained static fast-
Text word vectors into a simplified Transformer-based model to improve
its efficiency and accuracy. Despite the fact that these embeddings have
been outperformed by large models based on the Transformer architec-
ture, they can still contribute useful linguistic information, when com-
bined with contextual models, especially in low resource or computation-
ally constrained environments.
We demonstrate this by incorporating static embeddings directly into
our own BERTTINY-based models prior to pretraining using masked lan-
guage modeling. In this paper, we train the models on seven different lan-
guages covering three distinct language families. The results show that
the use of static fastText embeddings in these models not only improves
convergence for all tested languages, but also significantly improves their
evaluation accuracy.
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1 Introduction

In recent years, models based on the Transformer architecture have become the
dominant approach to solving many natural language processing tasks. Although
they achieve high accuracy, their practical deployment on devices with limited
computational resources is often impossible.

For this reason, more compact variants have emerged that reduce the number
of parameters and thus the computational power and memory requirements.
However, this reduction in model size usually results in a decrease in model
accuracy due to the limited representational capacity of the model.

In this paper, we propose a way to solve this problem by incorporating pre-
trained embeddings into a small Transformer model. Our goal is to combine the
advantages of static embeddings - low computational complexity and language
generalization - with the contextual representation offered by the Transformer
model. We hypothesize that initializing the model using pretrained embeddings
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will allow a small model to better learn the representation using fewer resources
without increasing model complexity.

To validate the generality of our approach, we conduct experiments in seven
languages from three language families. We show that incorporating static word
embeddings not only improves pretraining efficiency, but also consistently im-
proves accuracy during evaluation, especially for morphologically diverse lan-
guages.

The main contributions of this paper are:

– a simple architecture that integrates pretrained embeddings into a Trans-
former model without modifying its training process,

– evaluation across seven different languages from three language families,
– validation of the approach on the masked language modeling objective,
– detailed analysis of model converge, training loss and evaluation accuracy.

The remainder of this paper is structured as follows: Section 2 reviews re-
lated work on lightweight Transformers and static embeddings. Section 3 presents
our proposed hybrid embedding approach. Section 4 describes the experimental
setup, including datasets and training configuration. Section 5 analyzes model
convergence and accuracy results trained on multiple languages. Finally, Sec-
tion 6 concludes the paper and outlines future directions.

2 Related Work

Word embeddings based on the distributional hypothesis [11] represent a way to
create a high-quality vector representation of words that can be utilized in many
subsequent models to solve downstream tasks such as sentiment analysis [6],
named entity recognition [15], or other text classification tasks, e.g., metaphor
detection [26]. These embeddings, including Word2vec [18], GloVe [19], and fast-
Text [4], played a key role in many applications of natural language processing
(NLP) and still today allow these problems to be solved in low-resource envi-
ronments due to their speed and memory efficiency.

Compared to static embeddings, attention-based models [24] represent a dif-
ferent approach that uses context-aware embeddings. Models based on attention
referred to as Transformers, such as BERT [7], RoBERTa [16], ELECTRA [5],
and most recently ModernBERT [25] achieved state of the art in many ar-
eas of NLP. Parallel to these complex, high-parameter models, smaller versions
were also created through knowledge distillation and architecture simplification.
These models include TinyBERT [13], DistilBERT [21], BERTTINY [23] and Mo-
bileBERT [22]. These approaches demonstrate the fact that there is still a need
for efficient models with fewer parameters that can solve the same problems as
large models.

Current research shows that improvements can be achieved in text classifi-
cation by using static embeddings and attention-based models [1,9]. These ap-
proaches, however, do not include the smaller models mentioned above and do



Enhancing Masked Language Modeling in BERT Models 3

not consider the impact of using static embeddings directly in the pretraining of
Transformer model.

This paper addresses this gap by integrating static pretrained embeddings
into BERTTINY model and evaluating the impact on both model accuracy and
computational efficiency. The mentioned model was chosen because of its rather
simple architecture, which was suitable for our experiments. We chose pretrained
fastText embeddings, as they yielded better results when used in various deep
learning models [8,12]. Specifically, we chose the latest available fastText [10]
model pretrained on Common Crawl dataset.

3 Proposed Method

Transformer models, including BERTTINY use the attention [24] mechanism to
learn and better understand the relationships between words or, more precisely,
tokens in a given text. It is the attention that makes these models achieve state-
of-the-art performance. The calculation of attention can be seen in Equation
1.

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V, (1)

where Q ∈ Rm×dk , K ∈ Rm×dk , and V ∈ Rm×dv are the query, key, and value
matrices, respectively. Here, dk is the dimensionality of both queries and keys,
dv is the dimensionality of values, and m is the sequence length.

However, in order for attention to work properly, it is still necessary to cre-
ate a high-quality representation of the tokens that are its input. BERT-like
models learn the input representation during pretraining and the learned em-
beddings consist of three parts namely token embeddings, position embeddings,
and segmentation embeddings as we can see in Equation 2.

E = Etoken + Eposition + Esegment (2)

To improve and simplify the training of the model, we propose to replace
the randomly initialized Etoken embeddings with static pretrained embeddings
before the start of pretraining as we can see in Equation 3:

e⃗t =

{
E(t), t ∈ vocabulary
f(t), otherwise,

(3)

where e⃗t denotes the newly obtained vector representation for token t in the
tokenizer dictionary of the model. The symbol E(t) denotes the representation
obtained from the pretrained embeddings, and f(t) the fallback strategy if the
token is not in the dictionary of the pretrained embeddings. We will discuss
the challenges that need to be addressed during token mapping in detail in the
following section.

To the best of our knowledge, no previous work has explored the direct
integration of static pretrained embeddings into BERTTINY prior to pretraining.
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We believe that this integration allows BERTTINY to benefit from pretrained
static representations and thereby improve training efficiency while maintaining
the same number of training parameters and model training time.

3.1 Token Alignment

In order to use pretrained word embeddings such as fastText in a model based
on the Transformer architecture, several problems need to be solved beforehand.
The first, and probably the most important, is the inability to accurately map
embedding tokens to the tokens used by the model’s tokenizer. This token in-
consistency stems from the fact that for training word vectors, the input text
is tokenized to whole words. While some may use subword information during
the training, they are still stored as whole words. In contrast, BERT models use
WordPiece tokenization, where words are first split into individual letters and
then incrementally merged to form entire words or subwords.

The second issue is the difference in the dimensionality between the pre-
trained embeddings and the embeddings used by the BERT model. This problem
can be solved by adjusting the hidden size of the model to match the dimension
of the word vectors. In cases where we do not want to modify the hidden size,
it may be better to add a linear mapping to the model, which the model learns
during training, but at the cost of slower convergence and an increased number
of parameters.

The third one is the difference between the distribution of the word vectors
and the initial random initialization in the BERT model used during pretraining.
However, this difference can be reduced quite easily by introducing a suitable
normalization before using the pretrained word vectors in the model.

4 Experimental Setup

Experiments were conducted on seven languages, namely English (En), German
(De), Czech (Cs), Polish (Pl), Italian (It), Spanish (Es) and French (Fr).
These languages were selected from a total of three different language groups,
namely Germanic, Romance and Slavic, and with varying morphological com-
plexity in order to assess how language type affects the resulting model accuracy.

A custom tokenizer with a vocabulary of 30 000 words was trained for each
language. Each tokenizer was trained with 5 million examples and both cased
and uncased variants were created for all languages. Initial experiments showed
that better results were achieved with the cased variant, so it was chosen for
subsequent experiments.

4.1 Model Selection

For our experiments, we chose the BERTTINY [3,23] model due to its compact ar-
chitecture and low number of parameters, which allows significantly faster train-
ing than the larger BERTBASE and BERTLARGE models even on low-resource
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hardware. We then slightly modified the architecture of the selected model, in
particular, we increased the number of attention heads from 2 to 4, which allows
the model to capture a wider range of semantic relationships by focusing on more
parts of the input sequence simultaneously, allowing a richer understanding of
the input data [14]. This modification of the model increases its representational
capacity while keeping it lightweight. At the same time, we also increased the
hidden size of the model from 128 to 300 to make it easier to integrate static
embeddings without changing their dimension, as discussed in detail in Section
3.1. For efficient training on a single GPU, we reduced the sequence length from
512 to 128, as suggested in [5] and used to train the ELECTRA-Small model.
The complete list of all model parameters is given in the Table 4.

Our main goal was to improve this lightweight architecture without decreas-
ing its efficiency benefits, making it a natural candidate for integrating static
embeddings.

4.2 Datasets

The publicly available allenai/c4 corpus [20] was used to create the training
and evaluation datasets. The corpus contains several TB of data, so we chose
subsets that were sufficient to train each language for a given number of steps
and batch size. For model evaluation, we selected 100 000 examples for each
language, with the exception of Czech, whose evaluation dataset contained only
60 462 examples. All created datasets were then preprocessed using the respective
tokenizers and truncated to the maximum length of the model context, i.e. 128
tokens.

Table 1: Number of static embeddings vectors found for each language.
En De Cs Pl Es It Fr

21 233 16 595 17 208 16 066 19 147 18 710 19 045

Subsequently, it was necessary to extract static embedding vectors for tokens
from the tokenizer vocabulary for each language, as described in Section 3.1.
We selected pretrained fastText vectors with the dimension 300, which were first
preprocessed, namely normalized and mean-centered, as recommended in [2]. For
each language, we searched for word vectors in the top 300 000 most frequent
words since we wanted to use only vectors with a high-quality representation.
This is because our first experiments showed that the quality of the vectors is
a more important factor than the number of vectors. For this reason, it was
not possible to find vectors for all the tokens in the dictionary, and therefore
the model had to learn the remaining vectors itself. The total number of tokens
found for each language is shown in Table 1.

In our experiments, we also analyzed the impact of the different vector ini-
tialization options for tokens missing in static embeddings. In particular, we
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focused on the initialization using a vector of zeros and random initialization.
The results showed that it is better to initialize the vectors of missing tokens
using zero vectors. In the case of random initialization, the representations of
these tokens were harder for the model to relearn and the convergence of the
training loss took noticeably longer.

4.3 Training Configuration

All models were trained for the same number of epochs and used the same opti-
mization strategy to ensure fair comparison. We used the AdamW [17] optimizer,
which is most commonly used for training Transformer models [27].

The main hyperparameters were selected based on commonly used configu-
rations for training small Transformer models, with consideration for resource-
constrained hardware. We used a learning rate of 5e-4 as used in [5], a batch size
of 128, which balances model generalization and GPU memory size requirements,
and a maximum sequence length of 128 as mentioned in the model Section 4.1.
The total number of training steps was set to 100 000, which provides a reason-
able trade-off between model convergence and training time and allows the entire
pretraining to be completed in less than 24 hours even on older hardware with
a single GPU. In addition, we applied a 10% warmup rate and set the dropout
rate to 0.1. The complete list of hyperparameters is provided in table 4.

Pretraining of the model was conducted using the well-known masked lan-
guage modeling (MLM) objective following the procedure described in the origi-
nal BERT article [7]. Specifically, 15% of the input tokens were randomly masked
before training and the model was optimized to predict their original identity.
This self-supervised approach allows the model to learn contextual representa-
tions across languages without requiring labeled data. We decided not to use the
next sentence prediction (NSP) objective given the findings in [16], which showed
that removing the NSP in the RoBERTa model does not harm performance and
may even lead to improvements. Consequently, segmentation embeddings, which
are mainly used in the NSP task to distinguish between pairs of sentences, were
also omitted. For the implementation we used the Python programming language
and the transformers library with PyTorch. Furthermore, we fixed the random
seed with the same value to make the individual results more reproducible.

5 Results

In this section we focus on the evaluation of the experimental results, in par-
ticular the progression of training and evaluation loss during training and the
resulting accuracy of the models measured on the evaluation dataset. For training
and evaluation loss, we report cross-entropy loss values, and accuracy represents
the number of correctly identified masked tokens.

The Figure 1a shows the training loss during training of the Czech model.
Czech language was chosen for the exemplar plot because it is a morphologically
very rich language and, as might be expected, the use of embeddings is more
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Fig. 1: Training and evaluation loss measured during pretraining of the Czech
language model. The value of evaluation loss was computed every 5 000 steps.

apparent in its case. In the plot, BERTTINY refers to the model described in Sec-
tion 4.1 and BERTFT denotes our model using pretrained fastText embeddings.
The plot shows that for the model using pretrained embeddings, its loss function
decreases faster, i.e. the model learns more easily. At the same time, training of
our model is very efficient, as after less than a third of the total training time,
BERTFT reaches a lower value of the loss function than BERTTINY after the
whole training.

Table 2: Train and evaluation loss across all languages.
Model En De Cs Pl Es It Fr

Training dataset loss values
BERTTINY 3.459 3.467 3.125 3.266 3.174 3.317 3.162
BERTFT 3.272 3.098 2.750 3.115 2.867 2.917 2.881

Evaluation dataset loss values
BERTTINY 3.213 3.160 2.818 2.819 2.871 3.042 2.897
BERTFT 2.992 2.729 2.414 2.427 2.550 2.637 2.606

The Figure 1b shows the progression of the loss function measured on the
evaluation dataset. As in the previous case, the increased training efficiency and
the overall lower value of the loss function of our model compared to the baseline
BERTTINY is evident.
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Table 2 shows the training and evaluation loss across seven languages. The
proposed method consistently outperforms the standard BERTTINY model, with
the largest gains observed in German, Italian, Czech and Polish.

5.1 Accuracy

In addition to the training and evaluation losses of the model, the resulting
accuracy is also important, so we focus on its assessment in detail in this section.
As in the previous case, we again focus on the detailed evaluation of the Czech
model. The detailed progress of the accuracy during training can be seen in
Figure 2. The accuracy of the model was evaluated on an evaluation dataset every
5000 steps. The graph shows that after only 20 000 steps, our proposed model
already achieves higher accuracy than the classical model after training. Overall,
after training, BERTFT achieves more than seven percent higher accuracy than
BERTTINY. Therefore, the use of static embeddings also significantly improves
the accuracy of the resulting model. The progress of accuracy during training
for the remaining tested languages can be seen in Figure 3.
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Fig. 2: Accuracy of the Czech model during training assessed on the evaluation
dataset. The accuracy of the model was computed every 5 000 steps.

In Table 3, we can see the accuracy measured after training for all included
languages. On average, the increase in accuracy of our proposed model over all
languages is around six percent. In particular, the involvement of static embed-
dings helped German, Italian, Czech and Polish the most, with an improvement
of more than seven percent. As we anticipated, the highest increases occurred
especially in the morphologically richer languages. In comparison, the smallest
increase was observed in English, more specifically three percent.
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Table 3: Evaluation accuracy across all tested languages.
Model En De Cs Pl Es It Fr

BERTTINY 0.436 0.452 0.502 0.499 0.487 0.461 0.488
BERTFT 0.468 0.526 0.574 0.569 0.544 0.534 0.540

6 Conclusion

This paper presents a simple yet effective approach to improve the accuracy
and efficiency of BERTTINY by initializing its token embeddings with pretrained
fastText word vectors prior to pretraining. Our experiments show that the model
converges faster during pretraining while achieving consistent accuracy gains
across all seven tested languages, and maintaining nearly the same model size.
The average improvement of six percent suggests that the proposed approach is
suitable for different languages.

We believe that combining static and contextual embeddings is a promising
direction for future low-resource NLP applications. In future work, we would
like to focus also on multilingual models. For these models, we would also apply
linear transformations, which would map the word embeddings used to the same
space so that they could be used in the model.
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A Appendix

Table 4: Pretraining hyperparameters of the BERTTINY model.
Hyperparameter Value

Number of Layers 2
Number of Attention Heads 4
Hidden Size 300
Intermediate Size 512
Maximum Sequence Length 128
Vocabulary Size 30000
Number of Parameters 10501324
Dropout Rate 0.1
Learning Rate 5e-4
Batch Size 128
Number of Steps 100000
Warmup steps 10000
Optimizer AdamW
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(b) German
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(c) Polish
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(d) Spanish
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(e) Italian
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(f) French

Fig. 3: Evaluation accuracy during pretraining for the tested language.
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