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Abstract 

The paper presents the use of adaptive neural networks for carrying out simulation optimisation using 

digital models (discrete event simulation models) created in accordance with the Industry 4.0 concept. 

The digital models reflect different problems in industrial engineering. The simulation optimisers use 

an adaptive neural network to find the best settings of the digital models according to defined objective 

functions for each model. We evaluated the behaviour of the adaptive neural network with different 

evaluation criteria. We compared adaptive neural networks with various pseudo gradient, metaheuristic, 

evolutionary and swarm optimisation methods (and their combinations). 
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1. INTRODUCTION 

Today's turbulent times are increasingly demonstrating that humanity itself is in many cases 

dependent on the use of information and production technologies. The recent global socio-

economic crisis caused by the coronavirus is a clear example of this. Labour shortages have 

adversely affected production in many companies. The impacts are further exacerbated by other 

problems such as the scarcity of imported natural resources used in manufacturing. 

One way to mitigate these effects of the crisis is to implement the core of Industry 4.0. This 

approach changes strategies, organization, business models, value and supply chains, processes, 

products, skills, and stakeholder relationships. [1] 

The shared idea of the Industry 4.0 concept is that individual physical elements and processes 

are completely captured in the digital world and are able to communicate and interact with each 

other. [2]–[5] In such a cyber-physical system, we could not only control these elements by 

means of commands (a certain degree of autonomous control is also a prerequisite for these 

elements), but also test different options and find out what benefits a given option has for the 

enterprise – i.e., to optimise it. It is advisable to use simulation and link it to the optimisation – 

i.e., use simulation optimisation. 

Simulation optimisation aims at determining the best values of the input parameters, while the 

analytical objective function and constraints are not explicitly known in terms of design 

variables and their values can only be estimated by complicated analysis or time-consuming 

simulation. [6] 

It is impossible to test all the solutions due to it being an NP-hard modelled problem. Moreover, 

running a simulation model to test individual settings of the decision variables is time-

consuming and thus costly.  
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‘In addition, the revolution of the artificial intelligence era has led to the recent development of 

intelligent optimisation techniques that are able to comfortably provide near-optimal solutions 

to hard and complex real-world optimisation problems, which would not have been practicable 

using the traditional or exact optimisation methods.’ [7] 

We modified and tested an adaptive neural network (ANN) to find suitable settings for the input 

parameters of discrete simulation models with different specified objective functions. The use 

of neural networks (NNs) is typical for facial recognition, stock market prediction, social media 

etc., but the use of NNs is not so common for discrete event simulation optimisation.  

A hybrid approach for simulation optimisation of a pressure vessel design problem is presented 

in [8]. An adaptive neural network was proposed as a local and global metamodel-based 

optimisation method in [9]. 

It combines genetic algorithms and neural networks to predict the fitness function. 

Architectures combining machine learning and discrete event simulation for determining the 

route of a robot are presented in [10]. They use reinforcement learning and require the dynamics 

of the studied system to be known in sufficient detail, which is not applicable to all the 

problems. 

Generally, NNs are considered as global metamodelling methods and have received only minor 

attention [11], which is unfortunate considering the results in other areas.  

2. GLOBAL OPTIMISATION 

There is a wide class of optimisation techniques for solving industrial engineering optimisation 

problems. Discrete event simulation models where state variables change only at a discrete set 

of points in time usually have many different possible solutions - solution candidates - which 

cannot all be evaluated as they are NP-hard problems. The main problem is how to find the best 

solution (or near-optimal solution) in the big search space as follows: 

𝐗̌ = min𝐗∈𝑋̃  𝐹(𝐗) = {𝐗̌ ∈ 𝑋̃: 𝐹 (𝐗̌) ≤  𝐹(𝐗)∀𝐗 ∈ 𝑋̃} (1) 

where 𝐗̌ denotes the global minimum of the objective function (or set of functions, where the 

compound function represents the goal of the simulation study); 𝐹(𝐗) denotes the objective 

function value of the possible solution - solution candidate (the range usually includes real 

numbers 𝐹(𝐗) ⊆ ℝ, and the objective function maximisation can be converted to function 

minimisation or vice versa); 𝑋̃ denotes the search space.  

Each solution candidate in the search space is represented as the vector of the values for each 

decision variable as follows: 

𝐗 = [𝑥1, 𝑥2, … , 𝑥𝑛 ] (2) 

where 𝑥1 denotes the value of the first decision variable - simulation model input parameter. 

The search space (especially for discrete simulation models) is usually a boundary constrained 

problem as follows: 

𝑋̃ = ∏ 𝑋̃𝑗

𝑛

𝑗=1

= ∏[𝑎𝑗, 𝑏𝑗]

𝑛

𝑗=1

, 𝑎𝑗 ≤ 𝑏𝑗, 𝑎𝑗, 𝑏𝑗 ∈ ℝ (3) 

 

where 𝑋̃ denotes the search space—the domain of the decision variables; 𝑗 denotes the index of 

the 𝑗-th decision variable; 𝑛 denotes the dimension of the search space; 𝑎𝑗 denotes the lower 

bound of the interval of the 𝑗-th decision variable; 𝑏𝑗 denotes the upper bound of the interval of 

the 𝑗-th decision variable.  
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Finding the global minimum of an objective function is much more difficult because analytical 

methods are often inapplicable and using numerical methods leads to complication of the 

problem or is often inefficient. Global optimisation focuses on finding the global minimum or 

maximum in a defined search space, as opposed to finding local minima or maxima in the case 

of local optimisation, which tends to be relatively simpler. The local minimum of an objective 

function is an element of the search space where 𝐹: 𝑋̃ ↦ ℝ ∧ 𝑋̃ ⊆ ℝ: 

𝐗̌l: ∃𝑒 > 0: 𝐹(𝐗̌𝐥) ≤ 𝐹(𝐗)∀𝐗 ∈ 𝑋̃, |𝐗 − 𝐗̌l| < 𝑒 (4) 

where 𝐗̌l denotes the local minimum (for all 𝐗 neighbouring 𝐗̌l); 𝑒 denotes the boundary around 

the local minimum; 𝐹(𝐗̌𝐥) denotes the objective function value of the local minimum; the 

meanings of 𝐗, 𝑋̃ are described in the previous equation (4).  

Figure 1 shows the general principle of solving the simulation optimisation problem represented 

by the digital model built in commonly available simulation software (Arena and Tecnomatix 

PlantSimulation). The digital model has its own specified main objective function (mainly 

consisting of several partial objective functions) and its value is calculated based on the results 

of the simulation run with the model. The optimisation method – Adaptive Neural Network – 

ANN – implemented in the simulation optimizer changes the settings of the decision variables 

of the model.  

Simulation optimisation problem

Simulation model – calculate outputs 

Initial solution(s) – set decision variables

Objective function – calculate objective function value from outputs

Termination criterion is met YesNo

Terminate optimization process and provide 
best solution(s)

Simulation optimisation problem

Optimizaton method – change the settings 
of the decision variables

 

 

Figure 1: Simulation optimisation problem. 

We used the Server-Client architecture to manage the testing of different settings of the ANN. 

This architecture allows use of the external database of the performed simulation experiments 

and reducing the amount of time taken for testing different settings of ANN. Settings of ANN 

optimisation method parameters affect the progress of the searching the global optimum of the 

simulation model's objective function.  

Optimisation methods often work with individual elements of the search space (in the form of 

vectors with values of all decision variables – see equation (2)). It is often necessary to access 

the individual values of these decision variables (e.g., transforming the values of the decision 

variables of the solution candidates to create new solution candidates; for the termination 

criterion, etc.). The following notation uses square brackets to make the notation more readable 

(instead of listing individual subscripts separated by commas). Another reason for using this 

notation is to synchronize the standards used in algorithmizing and programming where a 

possible solution, i.e., an element (of the space of all solutions), is represented by a list where 

the values of the decision variables of the element are indexed according to the order of the 

individual decision variables from index 0 to the index number of axes - 1 (the decision 

variables represent axes in the n-dimensional search space): 

𝑥𝑗 = 𝐗[𝑗]∀𝑗: 𝑗 = {0,1,2, … , 𝑛 − 1} (5) 
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where 𝑥𝑗 denotes the value of the 𝑗-th decision variable of the solution candidate 𝐗; 𝑗 denotes 

the index of the decision variable; 𝑛 denotes the dimension of the search space containing all 

possible solutions. 

We have modified the optimisation methods in such a way that they are applicable for discrete 

event simulation optimisation. We have also modified some of these methods to improve their 

behaviour to find the global optimum and improve their efficiency (the methods use the 

principles used in evolutionary algorithms – mutation and generation). The selected 

optimisation methods have been applied to industrial practice problems modelled by discrete-

event simulation models. 

3. SIMULATION MODELS 

Simulation models used in Industry 4.0 represent real elements of a modelled system (entities, 

processes, etc.) – they are also known as digital twins. We selected different digital models - to 

compare the effectiveness of ANNs compared to other commonly used optimisation methods 

in discrete event simulation optimisation. The discrete event simulation models were built in 

the simulation software Arena (by Rockwell Software) and Tecnomatix PlantSimulation (by 

Siemens). These models represent different optimisation problems in the field of industrial 

engineering in the industrial companies for which they were created (the models had to be 

slightly modified due to trade secrets). 

We tested the following models: 

• Assembly line model - characterises the production line for two different 

manufacturing processes including the relative error rates at each workstation. The aim 

is to maximize the number of defect-free products produced. 

• Penalty model - represents a production workshop where two types of products are 

produced. The objective is to produce a defined quantity of each product type in a 

defined time. 

• Manufacturing system and logistics model – the model captures the overall internal 

logistics in the production hall and warehouse. The goal is to maximize the utilization 

of all assembly lines and all tow tractors. 

• Transport model – the model describes the transport from the warehouse to the 8 

production lines using tow tractors. The goal of the simulation study is to find the correct 

sequence of loading points for the lines and to determine the individual loading points 

for each tow tractor. 

• Production and control stations model – the model represents a production workshop 

consisting of different types of workplaces. The goal of the simulation optimisation is 

to determine the number of machines and inspectors at each workstation so that forklifts, 

machines, and inspectors are utilised as much as possible while the production is 

maximised. 

• AGV transport model – the model represents the supply of individual assembly lines 

by automatically guided vehicles (AGVs) - tow tractors with trailers. The goal is to 

maximise the average utilization of all assembly lines, which is superior to the average 

utilisation of all types of AGVs. 

4. ADAPTIVE NEURAL NETWORK 

The tested methods have been selected based on directly integrated simulation optimisers for 

commonly used simulation software, other stand-alone applications that are used for a discrete-

event simulation optimisation and the representation of optimisation methods in a systematic 

search for industrial engineering problems – see [7], [12], [13]. 



 

5 
 

We have developed our own applications for managing the parallel simulation optimisers to 

analyse and evaluate the behaviour of each optimisation method compared to various criteria 

of simulation optimisation efficiency. This application allows us to: set parameters of 

optimisation methods and analyse their behaviour under different settings; statistically evaluate 

the behaviour of optimisation methods based on different aspects; select different search 

strategies for the methods; use parallel simulation optimisation; use a database with the results 

of optimisation experiments already performed (this approach is particularly effective in 

parallel simulation optimisation); specify the termination criteria of the optimisation 

experiment; identify which method was used and how successful it was (methods are switched 

during the optimisation process, e.g. due to competing characteristics or the use of artificial 

intelligence); implement behavioural modifications of the methods due to software closure etc. 

Testing all possible solutions to find a suitable solution candidate or the best solution candidate 

of the search space (global optimum of the objective function of a modelled problem) is a very 

inefficient way and mostly impossible due it being an NP-hard problem. Many of the 

optimisation algorithms (especially naturally inspired algorithms) generate the whole 

population containing a big number of these solution candidates which are iteratively refined 

as follows: 

𝐗𝑖 = 𝑋Pop[𝑖]∀𝑖: 𝑖 = {0,1,2, … , 𝑚 − 1} (6) 

where 𝐗𝑖 denotes the 𝑖-th generated solution candidate; 𝑋Pop denotes the list—population—of 

generated solution candidates; 𝑚 denotes the length of the list 𝑋Pop — population size. 

Ideally, more candidates are generated in more promising areas of the search space. These areas 

can be identified based on the objective function 𝐹(𝑋). However, the objective function is 

unknown. Therefore, we use a multilayer perceptron (MLP) to approximate the objective 

function from already gathered candidates, since MLPs are good function approximators [14]. 

We utilize the approximation of the objective function 𝐹̂(𝑋) to generate new candidates. 

The architecture of the network consists of input, output and three hidden layers, which is 

enough to reproduce any continuous function [15]. The input layer accepts the candidate (vector 

𝑋𝑖). The output layer is a single neuron with a linear activation function to predict 𝐹̂(𝑋𝑖). The 

hidden layers are fully connected layers with a leaky ReLU activation function. The number of 

neurons is given by the noNeurons parameter. In the first, second and third layer, there are 

noNeurons, 2 × noNeurons and noNeurons neurons respectively. 

ALGORITHM 1: ANN Optimisation pseudocode 

1  begin 

2   𝑋Pop ⟵ CreateInitialPopulation(); 

3   𝑋NewPop ⟵ 𝑋Pop;  

4  
 // the best solutions candidate in XPop according to objective function 𝐹(X) 

 𝐗Best ⟵ Min(𝑋Pop,F(𝑋Pop));  

5   while not TerminationCriterion( ) do begin 

6  
  // train MLP to approximate objective function 

  𝑀𝐿𝑃 ⟵ Train(𝑀𝐿𝑃, 𝑋Pop, 𝐹(𝑋Pop) );   

7    𝑋LastPop ⟵ 𝑋NewPop; 

8    𝑋NewPop ⟵ GenerateCandidates(𝑀𝐿𝑃, 𝐗Best, RangeFromBestPt); 

9    RangeFromBestPt ⟵ AdaptRangeFromBestPt(RangeFromBestPt); 

10    𝑋Pop ⟵ 𝑋Pop + 𝑋NewPop; 

11    𝐗Best ⟵ Min (𝑋Pop, 𝐹(𝑋Pop)) ; 

12   end;   

13   result ⟵ 𝐗Best; 

14  end; 
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Figure 2: Adaptive neural network optimisation method pseudocode. 

Algorithm 1 (see Figure 2) consists of several steps such as creation of initial population, 

training of the neural network to approximate the objective function, generation of candidates, 

adaptive setting of parameters for candidate generation and extending training data.  

Initial population is used as an initial training population for the neural network. It consists of 

randomly selected candidates using uniform distribution. The number of initial candidates is 

given by the InitialPopulationSize parameter. 

Objective function approximation 𝐹̂(𝑋) using MLP. Gathered training candidates 𝑋Pop and 

corresponding objective function values of these candidates 𝐹(𝑋Pop) are used as training data. 

The MLP is trained as a regression model to predict 𝐹̂(𝑋). Therefore, we use the mean squared 

error (MSE) loss function. The Adam method [16] is used as an optimiser and we utilise the 

early stopping technique. To standardise the inputs for various tasks and minimise high input 

values and gradients, the position coordinates (𝑋Pop) are normalised to an interval between 0 

and 1. Optionally, 𝐹(𝑋Pop) values can be also normalised for the training. The results after each 

iteration are used to extend the training data. This way, more training candidates are present in 

more promising areas and iterative training is used to refine the 𝐹̂(𝑋). 

ALGORITHM 2: GenerateCandidates pseudocode 

1  begin 

2   XCand ⟵ RandomNormalDistribution (
NumberOfCandidates × CandidateSelectionMul,

μ = 𝐗Best, σ = RangeFromBestPt
); 

3   YCand ⟵ MLP(𝑋Cand);  // 𝐹̂(𝑋Cand) 

4  
 // sort 𝑋Cand in ascending order according to 𝑌Cand 
 𝑋Cand ⟵ Sorta(𝑋Cand, 𝑌Cand);  

5   𝑋Prob ⟵ array[size(𝑋Cand)]; 

6   σ ⟵ size(𝑋Cand)/ ProbSelectionSigmas; 

7   for i ⟵ 0 to size(𝑋Cand) − 1 do begin 

8    𝑋Prob[i] ⟵ ei2/−2σ2
; 

9   end; 

10   s ⟵ sum(𝑋Prob); 

11   for i ⟵ 0 to size(𝑋Cand) − 1 do begin 

12    𝑋Prob[i] ⟵ 𝑋Prob[i] / s;  

13   end; 

14  
 // select NumberOfCandidates based on their probabilities 
 result ⟵ Select(𝑋Cand, 𝑋Prob, NumberOfCandidates)  

15  end; 

Figure 3: Generating candidates method pseudocode. 

 

Once we have the approximation model, we generate 𝑛 candidates (XCand) and approximate 

their objective function values 𝐹̂(𝑋Cand) according to Figure 3. The candidates are generated 

with the use of normal distribution with the currently best candidate 𝐗Best as a mean and 

RangeFromBestPt as a standard deviation. The number of generated candidates is given by 

NumberOfCandidates and CandidateSelectionMul parameters according to the following 

equation: 𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ×  𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑢𝑙. 
NumberOfCandidates candidates are selected based on their probability in a way that the 

candidate with the better approximated value has a higher probability to be selected. The 

probability of candidate selection is based on 𝑛, the ProbSelectionSigmas parameter and a 

gaussian function where σ = 𝑛/𝑃𝑟𝑜𝑏𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑖𝑔𝑚𝑎𝑠. 
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  ALGORITHM 3: AdaptRangeFromBestPt Pseudocode 

1  begin 

2   ImproveRatio ⟵ 0; 

3   for i ⟵ 0 to NumberOfCandidates − 1 do begin 

4    if 𝐹(𝑋NewPop[i]) < 𝐹(𝑋LastPop[i]) then 

5     ImproveRatio ⟵ ImproveRatio + 1;  

6    endif; 

7   end; 

8   ImproveRatio ⟵ ImproveRatio / NumberOfCandidates; 

9   if (ImproveRatio < SuccessRatio ) then 

10    RangeFromBestPt ⟵ RangeFromBestPt × RangeFromBestPtMultiplier; 

11   else if (ImproveRatio > SuccessRatio) then 

12    RangeFromBestPt ⟵ RangeFromBestPt / RangeFromBestPtMultiplier; 

13   endif; 

14  end; 

Figure 4: AdaptRangeFromBestPt Pseudocode. 

 

We set up the standard deviation of normal distribution RangeFromBestPt adaptively to allow 

both local and global optimisation to generate candidates (see Figure 4). We define 

ImproveRatio as a ratio of candidates with better objective functions than candidates from the 

previous iteration. Further, we force ImproveRatio to match defined SuccessRatio by 

multiplying or dividing by RangeFromBestPtMultiplier. 

5. EVALUATION OF OPTIMISATION EXPERIMENTS 

Many research papers are focused on testing and comparing the effectiveness of optimisation 

methods at finding the optimum for commonly used testing functions (Testing Benchmark), 

e.g., see [17]–[21]. Mean, standard deviation, deviation from optimum, etc. are commonly used 

to evaluate the performance of optimisation methods. These evaluation criteria are sufficient 

for commonly used testing functions where the global optimum is known and where no 

additional simulation software is used (the computational time taken to evaluate the objective 

function is negligible). These papers also use recommended settings that may not be appropriate 

for a different simulated optimisation problem.  

It is often necessary to perform simulation runs on additional simulation software when discrete 

simulation optimisation is done. Such simulation runs may take a long time. Therefore, it is 

advisable to define additional evaluation criteria for these optimisation runs.  

We propose using different evaluation criteria for analysing the efficiency of finding the 

optimum in the search space. These evaluation criteria can also analyse the behaviour of the 

optimisation method depending on different settings of the ANN method parameters. The 

behaviour of the tested ANN optimisation methods is partially random (the method contains 

elements of randomness e.g., generating candidate solutions), so we had to perform many 

optimisation experiments to identify the pure nature of the ANN method. Evaluation criteria 

are calculated from the box plot characteristics (minimum, lower quartile, median, and upper 

quartile and maximum). The box plot characteristics are calculated for each series. A series 

consists of replicated optimisation experiments performed with a specific setting of the 

optimisation method parameters). 

These evaluation criteria are normalised in a closed interval from 0 to 1 and can be divided into 

basic areas concerning the following criteria:  

The success of finding the optimum - the criterion represents the percentage of times the 

global optimum or candidate solution, whose objective function value is less than a defined 
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value from the objective function value of the global optimum of the objective function, was 

found in each series (a series consists of replicated simulation optimisation experiments with 

different settings of the optimisation algorithms according to different characteristics of the 

optimisation): 

|𝐹(𝐗𝑖) − 𝐹(𝐗∗)| ≤ 𝜀 (7) 

where 𝐹(𝐗𝑖) denotes the objective function of the found solution candidate of the 𝑖-th 

optimisation experiment (the solution whose objective function is in the tolerated deviation 

from the value of the optimum of the objective function 𝜀 = 0.001); 𝐹(𝐗∗) denotes the 

objective function value of the global optimum. 

The difference between the optimum and sub-optimum - this criterion evaluates the 

difference between the objective function value of the found best solution in the series and the 

optimum of the objective function value (the aim is to minimise this evaluation function): 

𝑓2 𝑖
= (

𝐹(𝐗∗) − 𝐹(𝐗∗
𝑖)

∆𝐹𝑋̃

) ∀𝑖: 𝑖 = {1,2, … , 𝑠}, 𝑓2 𝑖
∈ [0,1] (8) 

where 𝐹(𝐗∗) denotes the objective function value of the best found candidate solution of the 

search space in all series; 𝐹(𝐗∗
𝑖) denotes the objective function value of the best solution 

candidate found in i-th series; ∆𝐹𝑋̃ denotes the difference between the objective function value 

of the found best and worst candidate solutions of the search space in all series; 𝑠 denotes the 

number of performed series. 

This criterion is useful when there is no series which contains any optimum or a suboptimum 

whose objective function value is within the tolerance of the optimum objective function value.  

The distances of quartiles - the distance between the quartiles of a concrete series (the aim is 

to minimise this evaluation function). If the first criterion equals zero, then the third criterion 

also equals zero (in each optimisation experiment performed in the series, an optimum was 

found). If the objective function is minimised, the third criterion can be formulated as follows: 

𝑓3 𝑖
=

𝑓3𝑤1 𝑖
+ 𝑓3𝑤2𝑖

+ 𝑓3𝑤3 𝑖
+ 𝑓3𝑤4 𝑖

+ 𝑓3𝑤5 𝑖

∆𝐹𝑋̃

, ∀𝑖: 𝑖 = {1,2, … , 𝑠}, 𝑓3 𝑖
∈ [0,1] (9) 

𝑓3𝑤5𝑖
= |𝐹(𝐗∗

𝑖) − 𝐹(𝐗∗)|, 𝑓3𝑤4𝑖
= 𝑤4𝑓3

|𝐹(𝐗∗
𝑖) − 𝑄1𝑖

|, 𝑓3𝑤3 𝑖
= 𝑤3𝑓3

|𝑄1𝑖
− 𝑄2𝑖

|, 𝑓3𝑤2 𝑖
=

𝑤2𝑓3
|𝑄2𝑖

− 𝑄3𝑖
|, 𝑓3𝑤1 𝑖

= 𝑤1𝑓3
|𝑄3𝑖

− 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖
)| 

(10) 

where 𝑖 denotes the index of the series; 𝐹(𝐗∗
𝑖) denotes the objective function value of the best 

solution candidate of the 𝑖-th series; 𝑤4𝑓3
 denotes the weight of the objective function values 

between the best solution candidate and the lower quartile 𝑄1𝑖  of the 𝑖-th series (the values of 

the weights are defined based on the results of the simulation experiments and their sum equals 

1); 𝑤3𝑓3
 denotes the weight of objective function values between the lower quartile 𝑄1𝑖

 and 

median 𝑄2𝑖
 of the 𝑖-th series; 𝑤2𝑓3

 denotes the weight of objective function values between 

median 𝑄2𝑖  and the upper quartile 𝑄3𝑖
 of the 𝑖-th series; 𝑤1𝑓3

 denotes the weight of objective 

function values between the upper quartile 𝑄3𝑖
and the objective function value of the worst 

found possible solution 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖
) of the 𝑖-th series; 𝑠 denotes the number of the performed 

series (different settings of the optimisation algorithm parameters); ∆𝐹𝑋̃ denotes the difference 

between the objective function values of the found best and worst candidate solutions of the 

search space in all series. 

The number of simulation experiments until the suboptimum was found - evaluates the 

number of performed simulation experiments until the best solution candidate was found in 

each series (the aim is to minimise this evaluation function): 
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𝑓4 𝑖
=

𝑓4𝑤1 𝑖
+ 𝑓4𝑤2𝑖

+ 𝑓4𝑤3 𝑖
+ 𝑓4𝑤4 𝑖

+ 𝑓4𝑤5 𝑖

𝑋̃𝐻

, ∀𝑖: 𝑖 = {1,2, … , 𝑠}, 𝑓4𝑖
∈ [0,1] (11) 

𝑓4𝑤5𝑖
= |𝑚𝑖𝑛𝑆𝐸𝑖

− 1|, 𝑓4𝑤4𝑖
= 𝑤4𝑓4

|𝑚𝑖𝑛𝑆𝐸𝑖
− 𝑄1𝑖

|, 𝑓4𝑤3 𝑖
= 𝑤3𝑓4

|𝑄1𝑖
− 𝑄2𝑖

|, 𝑓4𝑤2 𝑖
= 𝑤2𝑓4

|𝑄2𝑖
− 𝑄3𝑖

|, 𝑓4𝑤1 𝑖
=

𝑤1𝑓4
|𝑄3𝑖

− 𝑚𝑎𝑥𝑆𝐸| 
(12) 

where parameters 𝑖, 𝑠 have the same nature as in the previous equation – see (9); 𝑚𝑖𝑛𝑆𝐸 denotes 

the minimum number of simulation experiments that the optimisation method performed in the 

optimisation experiment to find the best solution candidate of the 𝑖-th series; 𝑚𝑎𝑥𝑆𝐸 denotes 

the maximum number of simulation experiments that the optimisation method performed in the 

optimisation experiment to find the best solution candidate of the 𝑖-th series; 𝑤4𝑓4
 denotes the 

weight (penalty) of values between 𝑚𝑖𝑛𝑆𝐸 and the lower quartile 𝑄1𝑖
 of the 𝑖-th series; 𝑤3𝑓4

 

denotes the weight of values between the lower quartile 𝑄1𝑖
 and median 𝑄2𝑖

 of the 𝑖-th series; 

𝑤2𝑓4
 denotes the weight of values between median 𝑄2𝑖  and the upper quartile 𝑄3𝑖

 of the 𝑖-th 

series; 𝑤1𝑓4
 denotes the weight of values between the upper quartile 𝑄3𝑖

and the 𝑚𝑎𝑥𝑆𝐸 of the 

𝑖-th series; 𝑋̃𝐻 denotes the maximum number of simulation experiments that the optimisation 

method can perform in each optimisation experiment in all series – using the entropy 

termination criterion. 

The convergence to the optimum – represents the evolution of the values of the objective 

function of the solutions generated towards the desired objective function value to be achieved 

in the optimisation experiment. If the objective function is minimised the third criterion can be 

formulated as follows: 

𝑓5 𝑖
=

𝑓5𝑤1 𝑖
+ 𝑓5𝑤2𝑖

+ 𝑓5𝑤3 𝑖
+ 𝑓5𝑤4 𝑖

+ 𝑓5𝑤5 𝑖

∆𝐹𝑋̃

, ∀𝑖: 𝑖 = {1,2, … , 𝑠}, 𝑓5 𝑖
∈ [0,1] (13) 

𝑓5𝑤5𝑖
= |𝐹(𝐗∗

𝑖) − 𝐹(𝐗∗)|, 𝑓5𝑤4𝑖
= 𝑤4𝑓5

|𝐹(𝐗∗
𝑖) − 𝑄1𝑖|, 𝑓5𝑤3 𝑖

= 𝑤3𝑓5
|𝑄1𝑖

− 𝑄2𝑖|, 𝑓5𝑤2 𝑖
= 𝑤2𝑓5

|𝑄2𝑖
− 𝑄3𝑖|, 𝑓5𝑤1 𝑖

=

𝑤1𝑓5
|𝑄3𝑖

− 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖
)| 

(14) 

where the parameters have the same nature as in the previous equation – see equation (9) and 

(10); the weights are defined for individual differences in box plot characteristics – the same 

principle as in equation (10). 

More detailed information on the evaluation methodology can be found in [22]. 

Weighted sum – is used for prioritising some criteria over others by setting the weights of 

individual criteria where the sum of the weights equals one: 

𝑤𝑓𝑗
∈ [0,1]∀𝑗: 𝑗 = {1,2, … ,5}, ∑ 𝑤𝑓𝑗

5

𝑗=1

= 1  (15) 

where 𝑤𝑓𝑗
 denotes the weight of the 𝑗-th criterion - the Saaty method (see [23]) was used to set 

the individual criteria weights -see (16). 

𝑤𝑓1
= 0.22, 𝑤𝑓2

= 0.56, 𝑤𝑓3
= 0.12, 𝑤𝑓4

= 0.06, 𝑤𝑓5
= 0.04 (16) 

The resulting evaluation function is the sum of the individual evaluation criteria multiplied by 

the corresponding weights for the 𝑖-th series (minimising the value representing the negative 

aspects of the algorithm's behaviour) – see (17). 

𝑓𝑖 = 𝑤𝑓1
∙ (1 − 𝑓1 𝑖

) + ∑ 𝑓𝑗 𝑖
∙ 𝑤𝑓𝑗

5

𝑗=2

∀𝑖: 𝑖 = {1,2, … , 𝑠} (17) 

where 𝑓𝑖 denotes the weighted sum of specified criteria of the i-th series (criterion 

minimisation); 𝑓𝑗 𝑖
 denotes the standardised scalar value of the 𝑗-th criterion of 𝑖-th series; 𝑤𝑓𝑗

 

denotes the weight of the 𝑗-th criterion of the 𝑖-th series; parameters 𝑖, 𝑠 have the same nature 

as in the previous equation – see (9).  
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The same rules of testing methods were always followed – the same values of simulation model 

parameters in the optimisation experiments, the same rules of termination criteria using the 

information entropy, the same intervals of simulation model parameter values, the settings of 

the optimisation methods parameters, etc. We tested different series to reduce the random 

behaviour of the ANN optimisation method depending on different settings of the ANN method 

parameters. The number of tested series depends on the number of the tested optimisation 

method parameters. The following table contains the number of tested series of optimisation 

methods – see Table I. We used intervals that include the recommended values of the 

optimisation methods parameters (if the parameter significantly influenced the behaviour of the 

optimisation method): 𝑛𝑜𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ∈ [32,64], 𝑠𝑡𝑒𝑝 = 32;  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 ∈
[100,500], 𝑠𝑡𝑒𝑝 = 100;  𝑅𝑎𝑛𝑔𝑒𝐹𝑟𝑜𝑚𝐵𝑒𝑠𝑡𝑃𝑡 = 0.33;  𝑅𝑎𝑛𝑔𝑒𝐹𝑟𝑜𝑚𝐵𝑒𝑠𝑡𝑃𝑡𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =
0.82; 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑖𝑜 ∈ [0.5,0.8], 𝑠𝑡𝑒𝑝 = 0.1; 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∈ [10,50], 𝑠𝑡𝑒𝑝 =
20;  𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 ∈ [10,50], 𝑠𝑡𝑒𝑝 = 20; 𝑃𝑟𝑜𝑏𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑖𝑔𝑚𝑎𝑠 ∈
[2,6], 𝑠𝑡𝑒𝑝 = 2; EarlyStopPatience ∈ [1,5], 𝑠𝑡𝑒𝑝 = 2 . 
 

Table I: Number of tested series 

RS DS LS HC TS SA DE ES SOMA PSO GA ANN 

1 2025 15 90 900 3840 96 16416 2304 470400000 26127360  1944 

After evaluating all the series (series = replicated optimisation experiments with the same 

setting of the optimisation method parameters) performed on the simulation models using a 

weighted sum (including all criteria with different weights), the characteristics of the following 

box plot are calculated and visualised in the box plot chart – see Figure 5. 

 

Figure 5: Weighted sum of evaluation criteria. 

An ANN is a suitable method which can be applied to the tested discrete simulation models. 

The ANN achieved satisfying results for the tested series e.g., the AGV Transport discrete event 

simulation model contains 15 model input parameters (all the simulation models’ input 

parameters could be varied within an interval of acceptable values specified for each model). 

When calculating the mean from the calculated means of all the series applied (calculated box 

plot characteristics) to all the discrete simulation models, the ANN is the fifth best method from 

the twelve tested optimisation methods – see Table II.  
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Table II: Arithmetic mean of weighted sum of evaluation criteria. 

Methods 

Differen-
tial Evolu-

tion 
Downhill 
Simplex 

SOMA 
Strategy 

Evolution 
Strategy 

Adaptive 
Neural 

network 

Particle 
swarm opti-

misation 
Simulated 
Annealing 

Random 
Search 

Tabu 
Search 

Hill 
Climb-

ing 
Local 

Search 

Genetic 
Algo-
rithm 

Mean 0.066 0.109 0.115 0.117 0.135 0.146 0.191 0.208 0.216 0.224 0.268 0.296 

6. CONCLUSION 

This paper is focused on the testing and evaluation of an Adaptive Neural Network in 

comparison with various pseudo gradient, metaheuristic, evolutionary and swarm optimisation 

methods (and their combinations) - Random Search, Hill Climbing, Tabu Search, Local Search, 

Downhill Simplex, Simulated Annealing, Differential Evolution, Evolution Strategy and 

Particle Swarm Optimisation. Based on the tests, it is shown that an ANN can be used as a 

promising optimisation method for discrete simulation optimisation. If we compare the 

effectivity of all the tested optimisation methods, the ANN method is in the top 5 best tested 

methods. There is great potential for modifying this method to improve its efficiency in finding 

the global optimum. 
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