
Int j simul model

ISSN 1726-4529

DOI

USING ADAPTIVE NEURAL NETWORK IN DISCRETE

EVENT SIMULATION OPTIMISATION

Raska, P.*; Ulrych, Z.**, Baloun, J.***, Malaga, M.* & Lenc, L.***
* Department of Industrial Engineering - FME, University of West Bohemia, Univerzitní 22, Pilsen

306 14, Czech Republic
** Department of Computing and Didactic Technology, Faculty of Education, University of West

Bohemia, Veleslavínova 42, 301 00 Pilsen, Czech Republic
*** Department of Computer Science and Engineering, Faculty of Applied Sciences, University of

West Bohemia, Technická 8, 301 00 Pilsen, Czech Republic

E-Mail: praska@fst.zcu.cz, ulrychz@kvd.zcu.cz, balounj@kiv.zcu.cz, malaga@fst.zcu.cz,

llenc@kiv.zcu.cz

Abstract

The paper presents the use of adaptive neural networks for carrying out simulation optimisation using

digital models (discrete event simulation models) created in accordance with the Industry 4.0 concept.

The digital models reflect different problems in industrial engineering. The simulation optimisers use

an adaptive neural network to find the best settings of the digital models according to defined objective

functions for each model. We evaluated the behaviour of the adaptive neural network with different

evaluation criteria. We compared adaptive neural networks with various pseudo gradient, metaheuristic,

evolutionary and swarm optimisation methods (and their combinations).
(Received in Month 202_, accepted in Month 202_. This paper was with the authors _ months for _ revisions.)

Key Words: Adaptive Neural Network, Optimisation Methods, Discrete-Event Simulation

Optimisation, Industrial Engineering

1. INTRODUCTION

Today's turbulent times are increasingly demonstrating that humanity itself is in many cases

dependent on the use of information and production technologies. The recent global socio-

economic crisis caused by the coronavirus is a clear example of this. Labour shortages have

adversely affected production in many companies. The impacts are further exacerbated by other

problems such as the scarcity of imported natural resources used in manufacturing.

One way to mitigate these effects of the crisis is to implement the core of Industry 4.0. This

approach changes strategies, organization, business models, value and supply chains, processes,

products, skills, and stakeholder relationships. [1]

The shared idea of the Industry 4.0 concept is that individual physical elements and processes

are completely captured in the digital world and are able to communicate and interact with each

other. [2]–[5] In such a cyber-physical system, we could not only control these elements by

means of commands (a certain degree of autonomous control is also a prerequisite for these

elements), but also test different options and find out what benefits a given option has for the

enterprise – i.e., to optimise it. It is advisable to use simulation and link it to the optimisation –

i.e., use simulation optimisation.

Simulation optimisation aims at determining the best values of the input parameters, while the

analytical objective function and constraints are not explicitly known in terms of design

variables and their values can only be estimated by complicated analysis or time-consuming

simulation. [6]

It is impossible to test all the solutions due to it being an NP-hard modelled problem. Moreover,

running a simulation model to test individual settings of the decision variables is time-

consuming and thus costly.

2

‘In addition, the revolution of the artificial intelligence era has led to the recent development of

intelligent optimisation techniques that are able to comfortably provide near-optimal solutions

to hard and complex real-world optimisation problems, which would not have been practicable

using the traditional or exact optimisation methods.’ [7]

We modified and tested an adaptive neural network (ANN) to find suitable settings for the input

parameters of discrete simulation models with different specified objective functions. The use

of neural networks (NNs) is typical for facial recognition, stock market prediction, social media

etc., but the use of NNs is not so common for discrete event simulation optimisation.

A hybrid approach for simulation optimisation of a pressure vessel design problem is presented

in [8]. An adaptive neural network was proposed as a local and global metamodel-based

optimisation method in [9].

It combines genetic algorithms and neural networks to predict the fitness function.

Architectures combining machine learning and discrete event simulation for determining the

route of a robot are presented in [10]. They use reinforcement learning and require the dynamics

of the studied system to be known in sufficient detail, which is not applicable to all the

problems.

Generally, NNs are considered as global metamodelling methods and have received only minor

attention [11], which is unfortunate considering the results in other areas.

2. GLOBAL OPTIMISATION

There is a wide class of optimisation techniques for solving industrial engineering optimisation

problems. Discrete event simulation models where state variables change only at a discrete set

of points in time usually have many different possible solutions - solution candidates - which

cannot all be evaluated as they are NP-hard problems. The main problem is how to find the best

solution (or near-optimal solution) in the big search space as follows:

𝐗̌ = min𝐗∈𝑋̃ 𝐹(𝐗) = {𝐗̌ ∈ 𝑋̃: 𝐹 (𝐗̌) ≤ 𝐹(𝐗)∀𝐗 ∈ 𝑋̃} (1)

where 𝐗̌ denotes the global minimum of the objective function (or set of functions, where the

compound function represents the goal of the simulation study); 𝐹(𝐗) denotes the objective

function value of the possible solution - solution candidate (the range usually includes real

numbers 𝐹(𝐗) ⊆ ℝ, and the objective function maximisation can be converted to function

minimisation or vice versa); 𝑋̃ denotes the search space.

Each solution candidate in the search space is represented as the vector of the values for each

decision variable as follows:

𝐗 = [𝑥1, 𝑥2, … , 𝑥𝑛] (2)

where 𝑥1 denotes the value of the first decision variable - simulation model input parameter.

The search space (especially for discrete simulation models) is usually a boundary constrained

problem as follows:

𝑋̃ = ∏ 𝑋̃𝑗

𝑛

𝑗=1

= ∏[𝑎𝑗, 𝑏𝑗]

𝑛

𝑗=1

, 𝑎𝑗 ≤ 𝑏𝑗, 𝑎𝑗, 𝑏𝑗 ∈ ℝ (3)

where 𝑋̃ denotes the search space—the domain of the decision variables; 𝑗 denotes the index of

the 𝑗-th decision variable; 𝑛 denotes the dimension of the search space; 𝑎𝑗 denotes the lower

bound of the interval of the 𝑗-th decision variable; 𝑏𝑗 denotes the upper bound of the interval of

the 𝑗-th decision variable.

3

Finding the global minimum of an objective function is much more difficult because analytical

methods are often inapplicable and using numerical methods leads to complication of the

problem or is often inefficient. Global optimisation focuses on finding the global minimum or

maximum in a defined search space, as opposed to finding local minima or maxima in the case

of local optimisation, which tends to be relatively simpler. The local minimum of an objective

function is an element of the search space where 𝐹: 𝑋̃ ↦ ℝ ∧ 𝑋̃ ⊆ ℝ:

𝐗̌l: ∃𝑒 > 0: 𝐹(𝐗̌𝐥) ≤ 𝐹(𝐗)∀𝐗 ∈ 𝑋̃, |𝐗 − 𝐗̌l| < 𝑒 (4)

where 𝐗̌l denotes the local minimum (for all 𝐗 neighbouring 𝐗̌l); 𝑒 denotes the boundary around

the local minimum; 𝐹(𝐗̌𝐥) denotes the objective function value of the local minimum; the

meanings of 𝐗, 𝑋̃ are described in the previous equation (4).

Figure 1 shows the general principle of solving the simulation optimisation problem represented

by the digital model built in commonly available simulation software (Arena and Tecnomatix

PlantSimulation). The digital model has its own specified main objective function (mainly

consisting of several partial objective functions) and its value is calculated based on the results

of the simulation run with the model. The optimisation method – Adaptive Neural Network –

ANN – implemented in the simulation optimizer changes the settings of the decision variables

of the model.

Simulation optimisation problem

Simulation model – calculate outputs

Initial solution(s) – set decision variables

Objective function – calculate objective function value from outputs

Termination criterion is met YesNo

Terminate optimization process and provide
best solution(s)

Simulation optimisation problem

Optimizaton method – change the settings
of the decision variables

Figure 1: Simulation optimisation problem.

We used the Server-Client architecture to manage the testing of different settings of the ANN.

This architecture allows use of the external database of the performed simulation experiments

and reducing the amount of time taken for testing different settings of ANN. Settings of ANN

optimisation method parameters affect the progress of the searching the global optimum of the

simulation model's objective function.

Optimisation methods often work with individual elements of the search space (in the form of

vectors with values of all decision variables – see equation (2)). It is often necessary to access

the individual values of these decision variables (e.g., transforming the values of the decision

variables of the solution candidates to create new solution candidates; for the termination

criterion, etc.). The following notation uses square brackets to make the notation more readable

(instead of listing individual subscripts separated by commas). Another reason for using this

notation is to synchronize the standards used in algorithmizing and programming where a

possible solution, i.e., an element (of the space of all solutions), is represented by a list where

the values of the decision variables of the element are indexed according to the order of the

individual decision variables from index 0 to the index number of axes - 1 (the decision

variables represent axes in the n-dimensional search space):

𝑥𝑗 = 𝐗[𝑗]∀𝑗: 𝑗 = {0,1,2, … , 𝑛 − 1} (5)

4

where 𝑥𝑗 denotes the value of the 𝑗-th decision variable of the solution candidate 𝐗; 𝑗 denotes

the index of the decision variable; 𝑛 denotes the dimension of the search space containing all

possible solutions.

We have modified the optimisation methods in such a way that they are applicable for discrete

event simulation optimisation. We have also modified some of these methods to improve their

behaviour to find the global optimum and improve their efficiency (the methods use the

principles used in evolutionary algorithms – mutation and generation). The selected

optimisation methods have been applied to industrial practice problems modelled by discrete-

event simulation models.

3. SIMULATION MODELS

Simulation models used in Industry 4.0 represent real elements of a modelled system (entities,

processes, etc.) – they are also known as digital twins. We selected different digital models - to

compare the effectiveness of ANNs compared to other commonly used optimisation methods

in discrete event simulation optimisation. The discrete event simulation models were built in

the simulation software Arena (by Rockwell Software) and Tecnomatix PlantSimulation (by

Siemens). These models represent different optimisation problems in the field of industrial

engineering in the industrial companies for which they were created (the models had to be

slightly modified due to trade secrets).

We tested the following models:

• Assembly line model - characterises the production line for two different

manufacturing processes including the relative error rates at each workstation. The aim

is to maximize the number of defect-free products produced.

• Penalty model - represents a production workshop where two types of products are

produced. The objective is to produce a defined quantity of each product type in a

defined time.

• Manufacturing system and logistics model – the model captures the overall internal

logistics in the production hall and warehouse. The goal is to maximize the utilization

of all assembly lines and all tow tractors.

• Transport model – the model describes the transport from the warehouse to the 8

production lines using tow tractors. The goal of the simulation study is to find the correct

sequence of loading points for the lines and to determine the individual loading points

for each tow tractor.

• Production and control stations model – the model represents a production workshop

consisting of different types of workplaces. The goal of the simulation optimisation is

to determine the number of machines and inspectors at each workstation so that forklifts,

machines, and inspectors are utilised as much as possible while the production is

maximised.

• AGV transport model – the model represents the supply of individual assembly lines

by automatically guided vehicles (AGVs) - tow tractors with trailers. The goal is to

maximise the average utilization of all assembly lines, which is superior to the average

utilisation of all types of AGVs.

4. ADAPTIVE NEURAL NETWORK

The tested methods have been selected based on directly integrated simulation optimisers for

commonly used simulation software, other stand-alone applications that are used for a discrete-

event simulation optimisation and the representation of optimisation methods in a systematic

search for industrial engineering problems – see [7], [12], [13].

5

We have developed our own applications for managing the parallel simulation optimisers to

analyse and evaluate the behaviour of each optimisation method compared to various criteria

of simulation optimisation efficiency. This application allows us to: set parameters of

optimisation methods and analyse their behaviour under different settings; statistically evaluate

the behaviour of optimisation methods based on different aspects; select different search

strategies for the methods; use parallel simulation optimisation; use a database with the results

of optimisation experiments already performed (this approach is particularly effective in

parallel simulation optimisation); specify the termination criteria of the optimisation

experiment; identify which method was used and how successful it was (methods are switched

during the optimisation process, e.g. due to competing characteristics or the use of artificial

intelligence); implement behavioural modifications of the methods due to software closure etc.

Testing all possible solutions to find a suitable solution candidate or the best solution candidate

of the search space (global optimum of the objective function of a modelled problem) is a very

inefficient way and mostly impossible due it being an NP-hard problem. Many of the

optimisation algorithms (especially naturally inspired algorithms) generate the whole

population containing a big number of these solution candidates which are iteratively refined

as follows:

𝐗𝑖 = 𝑋Pop[𝑖]∀𝑖: 𝑖 = {0,1,2, … , 𝑚 − 1} (6)

where 𝐗𝑖 denotes the 𝑖-th generated solution candidate; 𝑋Pop denotes the list—population—of

generated solution candidates; 𝑚 denotes the length of the list 𝑋Pop — population size.

Ideally, more candidates are generated in more promising areas of the search space. These areas

can be identified based on the objective function 𝐹(𝑋). However, the objective function is

unknown. Therefore, we use a multilayer perceptron (MLP) to approximate the objective

function from already gathered candidates, since MLPs are good function approximators [14].

We utilize the approximation of the objective function 𝐹̂(𝑋) to generate new candidates.

The architecture of the network consists of input, output and three hidden layers, which is

enough to reproduce any continuous function [15]. The input layer accepts the candidate (vector

𝑋𝑖). The output layer is a single neuron with a linear activation function to predict 𝐹̂(𝑋𝑖). The

hidden layers are fully connected layers with a leaky ReLU activation function. The number of

neurons is given by the noNeurons parameter. In the first, second and third layer, there are

noNeurons, 2 × noNeurons and noNeurons neurons respectively.

ALGORITHM 1: ANN Optimisation pseudocode

1 begin

2 𝑋Pop ⟵ CreateInitialPopulation();

3 𝑋NewPop ⟵ 𝑋Pop;

4
 // the best solutions candidate in XPop according to objective function 𝐹(X)

 𝐗Best ⟵ Min(𝑋Pop,F(𝑋Pop));

5 while not TerminationCriterion() do begin

6
 // train MLP to approximate objective function

 𝑀𝐿𝑃 ⟵ Train(𝑀𝐿𝑃, 𝑋Pop, 𝐹(𝑋Pop));

7 𝑋LastPop ⟵ 𝑋NewPop;

8 𝑋NewPop ⟵ GenerateCandidates(𝑀𝐿𝑃, 𝐗Best, RangeFromBestPt);

9 RangeFromBestPt ⟵ AdaptRangeFromBestPt(RangeFromBestPt);

10 𝑋Pop ⟵ 𝑋Pop + 𝑋NewPop;

11 𝐗Best ⟵ Min (𝑋Pop, 𝐹(𝑋Pop)) ;

12 end;

13 result ⟵ 𝐗Best;

14 end;

6

Figure 2: Adaptive neural network optimisation method pseudocode.

Algorithm 1 (see Figure 2) consists of several steps such as creation of initial population,

training of the neural network to approximate the objective function, generation of candidates,

adaptive setting of parameters for candidate generation and extending training data.

Initial population is used as an initial training population for the neural network. It consists of

randomly selected candidates using uniform distribution. The number of initial candidates is

given by the InitialPopulationSize parameter.

Objective function approximation 𝐹̂(𝑋) using MLP. Gathered training candidates 𝑋Pop and

corresponding objective function values of these candidates 𝐹(𝑋Pop) are used as training data.

The MLP is trained as a regression model to predict 𝐹̂(𝑋). Therefore, we use the mean squared

error (MSE) loss function. The Adam method [16] is used as an optimiser and we utilise the

early stopping technique. To standardise the inputs for various tasks and minimise high input

values and gradients, the position coordinates (𝑋Pop) are normalised to an interval between 0

and 1. Optionally, 𝐹(𝑋Pop) values can be also normalised for the training. The results after each

iteration are used to extend the training data. This way, more training candidates are present in

more promising areas and iterative training is used to refine the 𝐹̂(𝑋).

ALGORITHM 2: GenerateCandidates pseudocode

1 begin

2 XCand ⟵ RandomNormalDistribution (
NumberOfCandidates × CandidateSelectionMul,

μ = 𝐗Best, σ = RangeFromBestPt
);

3 YCand ⟵ MLP(𝑋Cand); // 𝐹̂(𝑋Cand)

4
 // sort 𝑋Cand in ascending order according to 𝑌Cand
 𝑋Cand ⟵ Sorta(𝑋Cand, 𝑌Cand);

5 𝑋Prob ⟵ array[size(𝑋Cand)];

6 σ ⟵ size(𝑋Cand)/ ProbSelectionSigmas;

7 for i ⟵ 0 to size(𝑋Cand) − 1 do begin

8 𝑋Prob[i] ⟵ ei2/−2σ2
;

9 end;

10 s ⟵ sum(𝑋Prob);

11 for i ⟵ 0 to size(𝑋Cand) − 1 do begin

12 𝑋Prob[i] ⟵ 𝑋Prob[i] / s;

13 end;

14
 // select NumberOfCandidates based on their probabilities
 result ⟵ Select(𝑋Cand, 𝑋Prob, NumberOfCandidates)

15 end;

Figure 3: Generating candidates method pseudocode.

Once we have the approximation model, we generate 𝑛 candidates (XCand) and approximate

their objective function values 𝐹̂(𝑋Cand) according to Figure 3. The candidates are generated

with the use of normal distribution with the currently best candidate 𝐗Best as a mean and

RangeFromBestPt as a standard deviation. The number of generated candidates is given by

NumberOfCandidates and CandidateSelectionMul parameters according to the following

equation: 𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 × 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑢𝑙.
NumberOfCandidates candidates are selected based on their probability in a way that the

candidate with the better approximated value has a higher probability to be selected. The

probability of candidate selection is based on 𝑛, the ProbSelectionSigmas parameter and a

gaussian function where σ = 𝑛/𝑃𝑟𝑜𝑏𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑖𝑔𝑚𝑎𝑠.

7

 ALGORITHM 3: AdaptRangeFromBestPt Pseudocode

1 begin

2 ImproveRatio ⟵ 0;

3 for i ⟵ 0 to NumberOfCandidates − 1 do begin

4 if 𝐹(𝑋NewPop[i]) < 𝐹(𝑋LastPop[i]) then

5 ImproveRatio ⟵ ImproveRatio + 1;

6 endif;

7 end;

8 ImproveRatio ⟵ ImproveRatio / NumberOfCandidates;

9 if (ImproveRatio < SuccessRatio) then

10 RangeFromBestPt ⟵ RangeFromBestPt × RangeFromBestPtMultiplier;

11 else if (ImproveRatio > SuccessRatio) then

12 RangeFromBestPt ⟵ RangeFromBestPt / RangeFromBestPtMultiplier;

13 endif;

14 end;

Figure 4: AdaptRangeFromBestPt Pseudocode.

We set up the standard deviation of normal distribution RangeFromBestPt adaptively to allow

both local and global optimisation to generate candidates (see Figure 4). We define

ImproveRatio as a ratio of candidates with better objective functions than candidates from the

previous iteration. Further, we force ImproveRatio to match defined SuccessRatio by

multiplying or dividing by RangeFromBestPtMultiplier.

5. EVALUATION OF OPTIMISATION EXPERIMENTS

Many research papers are focused on testing and comparing the effectiveness of optimisation

methods at finding the optimum for commonly used testing functions (Testing Benchmark),

e.g., see [17]–[21]. Mean, standard deviation, deviation from optimum, etc. are commonly used

to evaluate the performance of optimisation methods. These evaluation criteria are sufficient

for commonly used testing functions where the global optimum is known and where no

additional simulation software is used (the computational time taken to evaluate the objective

function is negligible). These papers also use recommended settings that may not be appropriate

for a different simulated optimisation problem.

It is often necessary to perform simulation runs on additional simulation software when discrete

simulation optimisation is done. Such simulation runs may take a long time. Therefore, it is

advisable to define additional evaluation criteria for these optimisation runs.

We propose using different evaluation criteria for analysing the efficiency of finding the

optimum in the search space. These evaluation criteria can also analyse the behaviour of the

optimisation method depending on different settings of the ANN method parameters. The

behaviour of the tested ANN optimisation methods is partially random (the method contains

elements of randomness e.g., generating candidate solutions), so we had to perform many

optimisation experiments to identify the pure nature of the ANN method. Evaluation criteria

are calculated from the box plot characteristics (minimum, lower quartile, median, and upper

quartile and maximum). The box plot characteristics are calculated for each series. A series

consists of replicated optimisation experiments performed with a specific setting of the

optimisation method parameters).

These evaluation criteria are normalised in a closed interval from 0 to 1 and can be divided into

basic areas concerning the following criteria:

The success of finding the optimum - the criterion represents the percentage of times the

global optimum or candidate solution, whose objective function value is less than a defined

8

value from the objective function value of the global optimum of the objective function, was

found in each series (a series consists of replicated simulation optimisation experiments with

different settings of the optimisation algorithms according to different characteristics of the

optimisation):

|𝐹(𝐗𝑖) − 𝐹(𝐗∗)| ≤ 𝜀 (7)

where 𝐹(𝐗𝑖) denotes the objective function of the found solution candidate of the 𝑖-th

optimisation experiment (the solution whose objective function is in the tolerated deviation

from the value of the optimum of the objective function 𝜀 = 0.001); 𝐹(𝐗∗) denotes the

objective function value of the global optimum.

The difference between the optimum and sub-optimum - this criterion evaluates the

difference between the objective function value of the found best solution in the series and the

optimum of the objective function value (the aim is to minimise this evaluation function):

𝑓2 𝑖
= (

𝐹(𝐗∗) − 𝐹(𝐗∗
𝑖)

∆𝐹𝑋̃

) ∀𝑖: 𝑖 = {1,2, … , 𝑠}, 𝑓2 𝑖
∈ [0,1] (8)

where 𝐹(𝐗∗) denotes the objective function value of the best found candidate solution of the

search space in all series; 𝐹(𝐗∗
𝑖) denotes the objective function value of the best solution

candidate found in i-th series; ∆𝐹𝑋̃ denotes the difference between the objective function value

of the found best and worst candidate solutions of the search space in all series; 𝑠 denotes the

number of performed series.

This criterion is useful when there is no series which contains any optimum or a suboptimum

whose objective function value is within the tolerance of the optimum objective function value.

The distances of quartiles - the distance between the quartiles of a concrete series (the aim is

to minimise this evaluation function). If the first criterion equals zero, then the third criterion

also equals zero (in each optimisation experiment performed in the series, an optimum was

found). If the objective function is minimised, the third criterion can be formulated as follows:

𝑓3 𝑖
=

𝑓3𝑤1 𝑖
+ 𝑓3𝑤2𝑖

+ 𝑓3𝑤3 𝑖
+ 𝑓3𝑤4 𝑖

+ 𝑓3𝑤5 𝑖

∆𝐹𝑋̃

, ∀𝑖: 𝑖 = {1,2, … , 𝑠}, 𝑓3 𝑖
∈ [0,1] (9)

𝑓3𝑤5𝑖
= |𝐹(𝐗∗

𝑖) − 𝐹(𝐗∗)|, 𝑓3𝑤4𝑖
= 𝑤4𝑓3

|𝐹(𝐗∗
𝑖) − 𝑄1𝑖

|, 𝑓3𝑤3 𝑖
= 𝑤3𝑓3

|𝑄1𝑖
− 𝑄2𝑖

|, 𝑓3𝑤2 𝑖
=

𝑤2𝑓3
|𝑄2𝑖

− 𝑄3𝑖
|, 𝑓3𝑤1 𝑖

= 𝑤1𝑓3
|𝑄3𝑖

− 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖
)|

(10)

where 𝑖 denotes the index of the series; 𝐹(𝐗∗
𝑖) denotes the objective function value of the best

solution candidate of the 𝑖-th series; 𝑤4𝑓3
 denotes the weight of the objective function values

between the best solution candidate and the lower quartile 𝑄1𝑖 of the 𝑖-th series (the values of

the weights are defined based on the results of the simulation experiments and their sum equals

1); 𝑤3𝑓3
 denotes the weight of objective function values between the lower quartile 𝑄1𝑖

 and

median 𝑄2𝑖
 of the 𝑖-th series; 𝑤2𝑓3

 denotes the weight of objective function values between

median 𝑄2𝑖 and the upper quartile 𝑄3𝑖
 of the 𝑖-th series; 𝑤1𝑓3

 denotes the weight of objective

function values between the upper quartile 𝑄3𝑖
and the objective function value of the worst

found possible solution 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖
) of the 𝑖-th series; 𝑠 denotes the number of the performed

series (different settings of the optimisation algorithm parameters); ∆𝐹𝑋̃ denotes the difference

between the objective function values of the found best and worst candidate solutions of the

search space in all series.

The number of simulation experiments until the suboptimum was found - evaluates the

number of performed simulation experiments until the best solution candidate was found in

each series (the aim is to minimise this evaluation function):

9

𝑓4 𝑖
=

𝑓4𝑤1 𝑖
+ 𝑓4𝑤2𝑖

+ 𝑓4𝑤3 𝑖
+ 𝑓4𝑤4 𝑖

+ 𝑓4𝑤5 𝑖

𝑋̃𝐻

, ∀𝑖: 𝑖 = {1,2, … , 𝑠}, 𝑓4𝑖
∈ [0,1] (11)

𝑓4𝑤5𝑖
= |𝑚𝑖𝑛𝑆𝐸𝑖

− 1|, 𝑓4𝑤4𝑖
= 𝑤4𝑓4

|𝑚𝑖𝑛𝑆𝐸𝑖
− 𝑄1𝑖

|, 𝑓4𝑤3 𝑖
= 𝑤3𝑓4

|𝑄1𝑖
− 𝑄2𝑖

|, 𝑓4𝑤2 𝑖
= 𝑤2𝑓4

|𝑄2𝑖
− 𝑄3𝑖

|, 𝑓4𝑤1 𝑖
=

𝑤1𝑓4
|𝑄3𝑖

− 𝑚𝑎𝑥𝑆𝐸|
(12)

where parameters 𝑖, 𝑠 have the same nature as in the previous equation – see (9); 𝑚𝑖𝑛𝑆𝐸 denotes

the minimum number of simulation experiments that the optimisation method performed in the

optimisation experiment to find the best solution candidate of the 𝑖-th series; 𝑚𝑎𝑥𝑆𝐸 denotes

the maximum number of simulation experiments that the optimisation method performed in the

optimisation experiment to find the best solution candidate of the 𝑖-th series; 𝑤4𝑓4
 denotes the

weight (penalty) of values between 𝑚𝑖𝑛𝑆𝐸 and the lower quartile 𝑄1𝑖
 of the 𝑖-th series; 𝑤3𝑓4

denotes the weight of values between the lower quartile 𝑄1𝑖
 and median 𝑄2𝑖

 of the 𝑖-th series;

𝑤2𝑓4
 denotes the weight of values between median 𝑄2𝑖 and the upper quartile 𝑄3𝑖

 of the 𝑖-th

series; 𝑤1𝑓4
 denotes the weight of values between the upper quartile 𝑄3𝑖

and the 𝑚𝑎𝑥𝑆𝐸 of the

𝑖-th series; 𝑋̃𝐻 denotes the maximum number of simulation experiments that the optimisation

method can perform in each optimisation experiment in all series – using the entropy

termination criterion.

The convergence to the optimum – represents the evolution of the values of the objective

function of the solutions generated towards the desired objective function value to be achieved

in the optimisation experiment. If the objective function is minimised the third criterion can be

formulated as follows:

𝑓5 𝑖
=

𝑓5𝑤1 𝑖
+ 𝑓5𝑤2𝑖

+ 𝑓5𝑤3 𝑖
+ 𝑓5𝑤4 𝑖

+ 𝑓5𝑤5 𝑖

∆𝐹𝑋̃

, ∀𝑖: 𝑖 = {1,2, … , 𝑠}, 𝑓5 𝑖
∈ [0,1] (13)

𝑓5𝑤5𝑖
= |𝐹(𝐗∗

𝑖) − 𝐹(𝐗∗)|, 𝑓5𝑤4𝑖
= 𝑤4𝑓5

|𝐹(𝐗∗
𝑖) − 𝑄1𝑖|, 𝑓5𝑤3 𝑖

= 𝑤3𝑓5
|𝑄1𝑖

− 𝑄2𝑖|, 𝑓5𝑤2 𝑖
= 𝑤2𝑓5

|𝑄2𝑖
− 𝑄3𝑖|, 𝑓5𝑤1 𝑖

=

𝑤1𝑓5
|𝑄3𝑖

− 𝐹(𝐗𝑊𝑜𝑟𝑠𝑡𝑖
)|

(14)

where the parameters have the same nature as in the previous equation – see equation (9) and

(10); the weights are defined for individual differences in box plot characteristics – the same

principle as in equation (10).

More detailed information on the evaluation methodology can be found in [22].

Weighted sum – is used for prioritising some criteria over others by setting the weights of

individual criteria where the sum of the weights equals one:

𝑤𝑓𝑗
∈ [0,1]∀𝑗: 𝑗 = {1,2, … ,5}, ∑ 𝑤𝑓𝑗

5

𝑗=1

= 1 (15)

where 𝑤𝑓𝑗
 denotes the weight of the 𝑗-th criterion - the Saaty method (see [23]) was used to set

the individual criteria weights -see (16).

𝑤𝑓1
= 0.22, 𝑤𝑓2

= 0.56, 𝑤𝑓3
= 0.12, 𝑤𝑓4

= 0.06, 𝑤𝑓5
= 0.04 (16)

The resulting evaluation function is the sum of the individual evaluation criteria multiplied by

the corresponding weights for the 𝑖-th series (minimising the value representing the negative

aspects of the algorithm's behaviour) – see (17).

𝑓𝑖 = 𝑤𝑓1
∙ (1 − 𝑓1 𝑖

) + ∑ 𝑓𝑗 𝑖
∙ 𝑤𝑓𝑗

5

𝑗=2

∀𝑖: 𝑖 = {1,2, … , 𝑠} (17)

where 𝑓𝑖 denotes the weighted sum of specified criteria of the i-th series (criterion

minimisation); 𝑓𝑗 𝑖
 denotes the standardised scalar value of the 𝑗-th criterion of 𝑖-th series; 𝑤𝑓𝑗

denotes the weight of the 𝑗-th criterion of the 𝑖-th series; parameters 𝑖, 𝑠 have the same nature

as in the previous equation – see (9).

10

The same rules of testing methods were always followed – the same values of simulation model

parameters in the optimisation experiments, the same rules of termination criteria using the

information entropy, the same intervals of simulation model parameter values, the settings of

the optimisation methods parameters, etc. We tested different series to reduce the random

behaviour of the ANN optimisation method depending on different settings of the ANN method

parameters. The number of tested series depends on the number of the tested optimisation

method parameters. The following table contains the number of tested series of optimisation

methods – see Table I. We used intervals that include the recommended values of the

optimisation methods parameters (if the parameter significantly influenced the behaviour of the

optimisation method): 𝑛𝑜𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ∈ [32,64], 𝑠𝑡𝑒𝑝 = 32; 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 ∈
[100,500], 𝑠𝑡𝑒𝑝 = 100; 𝑅𝑎𝑛𝑔𝑒𝐹𝑟𝑜𝑚𝐵𝑒𝑠𝑡𝑃𝑡 = 0.33; 𝑅𝑎𝑛𝑔𝑒𝐹𝑟𝑜𝑚𝐵𝑒𝑠𝑡𝑃𝑡𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =
0.82; 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑖𝑜 ∈ [0.5,0.8], 𝑠𝑡𝑒𝑝 = 0.1; 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∈ [10,50], 𝑠𝑡𝑒𝑝 =
20; 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 ∈ [10,50], 𝑠𝑡𝑒𝑝 = 20; 𝑃𝑟𝑜𝑏𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑖𝑔𝑚𝑎𝑠 ∈
[2,6], 𝑠𝑡𝑒𝑝 = 2; EarlyStopPatience ∈ [1,5], 𝑠𝑡𝑒𝑝 = 2 .

Table I: Number of tested series

RS DS LS HC TS SA DE ES SOMA PSO GA ANN

1 2025 15 90 900 3840 96 16416 2304 470400000 26127360 1944

After evaluating all the series (series = replicated optimisation experiments with the same

setting of the optimisation method parameters) performed on the simulation models using a

weighted sum (including all criteria with different weights), the characteristics of the following

box plot are calculated and visualised in the box plot chart – see Figure 5.

Figure 5: Weighted sum of evaluation criteria.

An ANN is a suitable method which can be applied to the tested discrete simulation models.

The ANN achieved satisfying results for the tested series e.g., the AGV Transport discrete event

simulation model contains 15 model input parameters (all the simulation models’ input

parameters could be varied within an interval of acceptable values specified for each model).

When calculating the mean from the calculated means of all the series applied (calculated box

plot characteristics) to all the discrete simulation models, the ANN is the fifth best method from

the twelve tested optimisation methods – see Table II.

11

Table II: Arithmetic mean of weighted sum of evaluation criteria.

Methods

Differen-
tial Evolu-

tion
Downhill
Simplex

SOMA
Strategy

Evolution
Strategy

Adaptive
Neural

network

Particle
swarm opti-

misation
Simulated
Annealing

Random
Search

Tabu
Search

Hill
Climb-

ing
Local

Search

Genetic
Algo-
rithm

Mean 0.066 0.109 0.115 0.117 0.135 0.146 0.191 0.208 0.216 0.224 0.268 0.296

6. CONCLUSION

This paper is focused on the testing and evaluation of an Adaptive Neural Network in

comparison with various pseudo gradient, metaheuristic, evolutionary and swarm optimisation

methods (and their combinations) - Random Search, Hill Climbing, Tabu Search, Local Search,

Downhill Simplex, Simulated Annealing, Differential Evolution, Evolution Strategy and

Particle Swarm Optimisation. Based on the tests, it is shown that an ANN can be used as a

promising optimisation method for discrete simulation optimisation. If we compare the

effectivity of all the tested optimisation methods, the ANN method is in the top 5 best tested

methods. There is great potential for modifying this method to improve its efficiency in finding

the global optimum.

ACKNOWLEDGEMENTS

This paper was created with the subsidy of the project SGS-2021-028 ‘Developmental and training tools

for the interaction of man and the cyber–physical production system’ carried out with the support of the

Internal Grant Agency of the University of West Bohemia.

This work has been partly supported by the Grant No. SGS2022-016 Advanced methods of data

processing and analysis.

REFERENCES

[1] H. Kagermann, “Change through digitization—value creation in the age of industry 4.0,” in
Management of Permanent Change, 2015. doi: 10.1007/978-3-658-05014-6_2.

[2] D. Balderas, A. Ortiz, E. Méndez, P. Ponce, and A. Molina, “Empowering Digital Twin for
Industry 4.0 using metaheuristic optimisation algorithms: case study PCB drilling
optimisation,” International Journal of Advanced Manufacturing Technology, vol. 113, no. 5–
6, 2021, doi: 10.1007/s00170-021-06649-8.

[3] G. Büchi, M. Cugno, and R. Castagnoli, “Smart factory performance and Industry 4.0,” Technol
Forecast Soc Change, vol. 150, p. 119790, Jan. 2020, doi: 10.1016/J.TECHFORE.2019.119790.

[4] I. Lee and K. Lee, “The Internet of Things (IoT): Applications, investments, and challenges for
enterprises,” Bus Horiz, vol. 58, no. 4, 2015, doi: 10.1016/j.bushor.2015.03.008.

[5] L. Atzori, A. Iera, and G. Morabito, “Understanding the Internet of Things: definition,
potentials, and societal role of a fast evolving paradigm,” Ad Hoc Networks, vol. 56, 2017, doi:
10.1016/j.adhoc.2016.12.004.

[6] L. Wang, “A hybrid genetic algorithm-neural network strategy for simulation optimisation,”
Appl Math Comput, vol. 170, no. 2, 2005, doi: 10.1016/j.amc.2005.01.024.

[7] A. E. Ezugwu et al., “Metaheuristics: a comprehensive overview and classification along with
bibliometric analysis,” Artif Intell Rev, vol. 54, no. 6, 2021, doi: 10.1007/s10462-020-09952-0.

[8] L. Wang, “A hybrid genetic algorithm-neural network strategy for simulation optimisation,”
Appl Math Comput, vol. 170, no. 2, 2005, doi: 10.1016/j.amc.2005.01.024.

12

[9] R. R. Barton and M. Meckesheimer, “Chapter 18 Metamodel-Based Simulation Optimisation,”
Handbooks in Operations Research and Management Science, vol. 13, no. C. 2006. doi:
10.1016/S0927-0507(06)13018-2.

[10] A. Greasley, “Architectures for combining discrete-event simulation and machine learning,” in
SIMULTECH 2020 - Proceedings of the 10th International Conference on Simulation and
Modeling Methodologies, Technologies and Applications, 2020. doi:
10.5220/0009767600470058.

[11] R. R. Barton, “Simulation optimisation using metamodels,” in Proceedings - Winter Simulation
Conference, 2009. doi: 10.1109/WSC.2009.5429328.

[12] W. Trigueiro de Sousa Junior, J. A. Barra Montevechi, R. de Carvalho Miranda, and A. Teberga
Campos, “Discrete simulation-based optimisation methods for industrial engineering
problems: A systematic literature review,” Comput Ind Eng, vol. 128, 2019, doi:
10.1016/j.cie.2018.12.073.

[13] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on new generation
metaheuristic algorithms,” Comput Ind Eng, vol. 137, p. 106040, Nov. 2019, doi:
10.1016/J.CIE.2019.106040.

[14] G. Cybenko and G. Cybenkot, “Approximation by superpositions of a sigmoidal function. Math
Cont Sig Syst (MCSS) 2:303-314 Mathematics of Control, Signals, and Systems Approximation
by Superpositions of a Sigmoidal Function*,” Math. Control Signals Systems, vol. 2, 1989.

[15] A. N. Kolmogorov, “On the representation of continuous functions of several variables by
superposition of continuous functions of one variable and addition,” American Mathematical
Society Translations Series 2, vol. 17. pp. 369–373, 1961.

[16] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimisation,” in 3rd International
Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.

[17] B. Al-Khateeb, K. Ahmed, M. Mahmood, and D. N. Le, “Rock Hyraxes Swarm Optimisation: A
New Nature-Inspired Metaheuristic Optimisation Algorithm,” Computers, Materials and
Continua, vol. 68, no. 1, 2021, doi: 10.32604/cmc.2021.013648.

[18] K. Arora et al., “Optimisation methodologies and testing on standard benchmark functions of
load frequency control for interconnected multi area power system in smart grids,”
Mathematics, vol. 8, no. 6, 2020, doi: 10.3390/MATH8060980.

[19] K. Hussain, M. N. M. Salleh, S. Cheng, and R. Naseem, “Common benchmark functions for
metaheuristic evaluation: A review,” International Journal on Informatics Visualization, vol. 1,
no. 4–2. 2017. doi: 10.30630/joiv.1.4-2.65.

[20] P. Wang, Y. Zhou, Q. Luo, C. Han, Y. Niu, and M. Lei, “Complex-valued encoding metaheuristic
optimisation algorithm: A comprehensive survey,” Neurocomputing, vol. 407, 2020, doi:
10.1016/j.neucom.2019.06.112.

[21] A. M. Ahmed, T. A. Rashid, and S. A. M. Saeed, “Cat Swarm Optimisation Algorithm: A Survey
and Performance Evaluation,” Computational Intelligence and Neuroscience, vol. 2020. 2020.
doi: 10.1155/2020/4854895.

[22] P. Raska and Z. Ulrych, “Methodology for evaluating optimisation experiments,” in 32nd
European Modeling and Simulation Symposium, EMSS 2020, 2020. doi:
10.46354/i3m.2020.emss.008.

[23] T. L. Saaty and L. G. Vargas, DECISION MAKING WITH THE Economic , Political , Social and
Technological Applications with Benefits , Opportunities , Costs and Risks, vol. 95. 2006.

