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Abstract. The rapid development in the field of natural language pro-
cessing (NLP) and the increasing complexity of linguistic tasks demand
the use of efficient and effective methods. Cross-lingual linear transforma-
tions between semantic spaces play a crucial role in this domain. How-
ever, compared to more advanced models such as transformers, linear
transformations often fall short, especially in terms of accuracy. It is
thus necessary to employ innovative approaches that not only enhance
performance but also maintain low computational complexity.

In this study, we propose Kernel Least Squares (KLS) for linear transfor-
mation between semantic spaces. In our comprehensive analysis involving
three intrinsic and two extrinsic experiments across six languages from
three different language families and a comparative evaluation with nine
different linear transformation methods, we demonstrate the superior
performance of KLS. Our results show that the proposed method signif-
icantly improves word translation accuracy, thereby standing out as the
most efficient method for transforming only the source semantic space.

Keywords: cross-lingual transformations · kernels · linear transforma-
tions · semantic spaces.

1 Introduction

Semantic spaces are based on the Distributional Hypothesis [18], which states
that the meaning of a word is determined by its surroundings, so words that occur
in similar contexts will also have similar meanings. Based on this hypothesis,
several different semantic models were consequently developed [25,28,5].

The natural next step was the development of methods that would allow
semantic spaces to be transformed between each other, or to create a unified
space across several different languages. We can divide these methods for cross-
lingual transformations into two basic groups, the supervised and unsupervised
methods. Supervised methods are most often based on linear transformations
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[26,2,13,22,6,19] and only need to build a dictionary containing a few thousand
words [31]. The second group consists of unsupervised methods [11,21,3] that
produce their own dictionary based on internal similarities in the given spaces.
In this case, the dictionary is created only during the transformation and is of
very high quality compared to the supervised approach.

Cross-lingual semantic spaces find application in many different NLP tasks.
For instance, they can be used for sentiment analysis [27,1], document classifica-
tion [20], or syntactic dependency parsing across languages [16]. Recently, more
complex models based on the transformer architecture [30], such as BERT mod-
els [12,32], have been increasingly used for these tasks. However, experiments
show that semantic spaces in certain cases can still achieve comparable quality
at significantly lower computational cost [29].

In this paper, we present the Kernel Least Squares (KLS) method, a new ap-
proach proposed to improve the accuracy and efficiency of cross-lingual semantic
transformations. Unlike traditional methods, the KLS method uses kernel-based
techniques to capture nonlinear relationships in the data, which promises to
significantly improve word translation accuracy and overall performance on a
variety of language tasks.

The paper is organized as follows: Section 2 provides a detailed analysis
of previous work in the field of cross-lingual transformations. In Section 3 we
describe the kernels and our proposed transformation KLS. Section 4 presents
the experimental setup, while Section 5 presents the measured results. Finally,
we conclude in Section 6.

2 Cross-lingual Transformations between Semantic
Spaces

A cross-lingual linear transformation between semantic spaces can be defined as:

Y = Tx→yX, (1)

where matrices X ∈ Rm×d and Y ∈ Rm×d are constructed using the dictionary
Dx→y of word pairs (wx, wy), where x is the source language and y is the
target language. Symbol m represents the size of the used dictionary, and d
represents the dimension of the semantic space. In the following text, we present
nine different cross-lingual transformations that were used for comparison in
the experiments with our proposed transformation. They all differ in how they
estimate the matrix T.

The first of these transformations, the Least Squares Transformation [26],
minimizes the total squared differences between paired word vectors in two lan-
guages aligned according to a bilingual dictionary. This approach offers an ana-
lytical solution through singular value decomposition (SVD). It uses a transfor-
mation matrix derived via the Moore-Penrose pseudoinverse, which provides a
direct estimation for mapping between semantic spaces.

Orthogonal Transformation [2] extends the least squares approach by en-
forcing the orthogonality of the transformation matrix to preserve the angles
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between the word vectors of the transformed semantic space. This method also
uses SVD to compute the optimal transformation matrix.

The next method, Canonical Correlation Analysis [13] tries to maximize
the correlation between projected vectors of two sets from different languages,
finding optimal basis vectors for each set. This method uses canonical directions
to project words into a shared semantic space, enhancing multilingual semantic
performance.

Ranking Transformation [22] employs a max-margin hinge loss to reduce
hubness in high-dimensional spaces, optimizing the alignment of words across
languages by adjusting their ranks. The goal is to ensure the correct alignment
of words across languages by optimizing their relative ranks within the semantic
space.

Orthogonal Ranking Transformation [6] adds orthogonal constraints to the
Ranking Transformation to address asymmetry problem in cross-lingual map-
pings. It uses two max-margin loss functions to optimize transformation matrix
towards being nearly orthogonal, thus preserving the monolingual performance.

Geometry-aware Multilingual Mapping [19] aligns semantic spaces using or-
thogonal transformations and Mahalanobis metrics allowing for more efficient
learning of similarity measures. This method optimizes both the source and tar-
get semantic spaces to achieve more accurate semantic alignment.

Vector Mapping [3] is an unsupervised method that iteratively refines the
transformation matrix without the need for labeled parallel data, which is ideal
for resource-limited languages. It starts by aligning semantic spaces and refines
the mapping using a self-learning algorithm focusing on the internal structures
of the semantic spaces.

Multilingual Unsupervised and Supervised Embeddings [11] is an unsupervised
method that uses adversarial training to align semantic spaces without the need
for bilingual dictionaries. It improves the alignment quality by using a discrimi-
nator that tries to distinguish between transformed and real word vectors of the
target semantic space.

Kernel Canonical Correlation Analysis [4] is method based on the previously
mentioned canonical correlation analysis, but enhances it by using kernels. By
using kernels, the nonlinear relationship between two languages can be captured
using a linear transformation. The obtained transformation matrix can thus be
used in the same way as in the previous transformations.

3 Proposed Transformation

In the proposed Kernel Least Squares Transformation method, we build on the
first proposed transformation, the Least Squares Transformation method, but
greatly improve it by using kernels. The use of kernels allows us to significantly
enhance the accuracy of the transformations by facilitating the capture of com-
plex, high-dimensional relationships in the data. Since kernels are an essential
part of our transformation, we will briefly introduce them in more detail in the
following Section 3.1.
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3.1 Kernel Function

The use of a kernel or kernel function κ : S × S → R in the proposed trans-
formation allows us to avoid the explicit mapping that is necessary for linear
learning algorithms to model a nonlinear function. We define the kernel between
any two data inputs ai and aj from the space S = {a1, . . . , an} as:

κ(ai, aj) = ⟨φ(ai), φ(aj)⟩, (2)

where φ : S → F represents a mapping to a feature space F , and the function
⟨·, ·⟩ denotes a generalized inner product in the feature space, that can be used
for both vectors and matrices. This transformation of inputs ai and aj into a
higher-dimensional space is essential for identifying latent structures in semantic
spaces and enhancing transformations.

To further explain the use of kernels in the transformation, it is useful to
introduce the concept of kernel matrix or Gram matrix. This n × n matrix,
denoted as K, is created by evaluating the chosen kernel function for each pair
of data points in a given data set. The entries of the matrix are given as:

Kij = ⟨φ(ai), φ(aj)⟩ = κ(ai, aj). (3)

The kernel matrix is symmetric since Kij = Kji, and contains the pairwise
comparisons within the space.

Table 1. Kernel types.

Kernel Function Kernel Formula
LK κ(ai, aj) = aT

i aj

PK κ(ai, aj) = (aT
i aj + c)d

RBF κ(ai, aj) = exp
(
−γ∥ai − aj∥22

)
CSK κ(ai, aj) = aT

i aj/(∥ai∥2∥aj∥2)

Several commonly used types of kernels are defined in the Euclidean space
Rd. Choosing the right kernel type is crucial for the final performance of the
transformation, as different kernels can significantly affect the resulting quality
of transformed semantic space and thus the results of individual experiments.
In our experiments, we employ four different types of kernels, namely, Linear
Kernel (LK), Polynomial Kernel (PK), Radial Basis Function Kernel (RBF),
and Cosine Similarity Kernel (CSK). The formulas for their calculation are given
in Table 1. Each of these kernels offers distinct advantages and is key to the
success of the semantic space transformation. Most of these kernels, especially
RBF, are commonly encountered in the context of SVM algorithms, which make
extensive use of them to find nonlinear decision boundaries [10]. However, in the
field of NLP we often see polynomial kernels of lower degrees [10,14].
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3.2 Kernel Least Squares Transformation

The optimization criterion is defined by Equation 4, where K denotes the kernel
matrix computed from the input data X, encapsulating the similarities between
data points. The symbol T̂x→y indicates the optimal transformation matrix.

T̂x→y = argmin
Tx→y

∥∥Y −KTx→y
∥∥2
2
. (4)

If we take the derivative of the equation with respect to T̂x→y, then the analytic
solution is given as T̂x→y = K−1Y. However, in practice, to increase stability
and ensure that the K matrix is invertible, we add the regularization term λ.
The final equation with this term is then given by:

T̂x→y = (K+ λI)−1Y. (5)

Here λ > 0 is a scalar value that adjusts the regularization strength, and I
represents the identity matrix.

Subsequently, we can transform arbitrary word vector x from source semantic
space to target semantic space with the following equation

ŷ = κ(x,X)T̂x→y. (6)

Essentially, we create a new kernel matrix for the transformed vector x that
contains the calculated similarities of this vector to all vectors from the input
data X in the given feature space. Therefore, this equation can be used to easily
transform each word vector from the source to the target semantic space.

The whole process of the proposed transformation method then involves sev-
eral key steps. First, we construct a kernel matrix K with the chosen kernel
function κ(xi,xj), which we evaluate for each pair of vectors xi,xj ∈ X. We
then calculate the optimal transformation matrix T̂x→y that achieves the small-
est values of the loss function as given in Equation 4. In the last step, it is
necessary to compute a kernel κ(x,X) between all x from the source semantic
space Sx and matrix X, enabling the transformation of the word vectors ac-
cording to Equation 6. After these steps, the transformation is complete and the
semantic space can then be used in any subsequent downstream tasks.

3.3 Preprocessing and Postprocessing

A necessary step to ensure optimal transformation quality is the appropriate
configuration and application of preprocessing and postprocessing techniques
to the semantic spaces. Both semantic spaces are therefore first column-wise
centered, followed by unit vector normalization, as shown in [2]. Normalizing the
semantic spaces ensures that the vectors contribute equally to the transformation
and their length does not affect the mapping.

Our research showed that applying the above steps to the source semantic
space after the transformation has been performed can further improve the mea-
sured results. For this reason, in Section 5, we present the results of methods
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with this setup, i.e. postprocessing. In the following Section 4, we present the
experiments used to evaluate the quality of the proposed transformation and the
measured results.

4 Experiments

In total, we conducted five different experiments, three intrinsic ones, namely
Word Translation (WT), Cross-lingual Word Analogies (WA), and Cross-lingual
Word Similarities (WS), and two extrinsic ones, Topic Classification (TC), and
Sentiment Analysis (SA). The individual experiments are described in more
detail in Section 4.2. All experiments were performed in both directions, i.e.
from the source semantic space to the target space and vice versa. This allowed
us to more accurately assess the resulting quality of individual transformations,
since some transformations may perform very well in the first direction and fail
in the opposite direction due to the asymmetry problem [6].

Nine additional linear transformations have been tested, including seven su-
pervised methods, namely Least Squares Transform (LS), Orthogonal Trans-
form (OT), Canonical Correlation Analysis (CCA), Ranking Transform (RT),
Orthogonal Ranking Transformation (ORT), Geometry-aware Multilingual Map-
ping (GEOMM), and Kernel Canonical Correlation Analysis (KCAA) and two
unsupervised methods, namely Vector Mapping (VM) and Multilingual Unsuper-
vised and Supervised Embeddings (MUSE). The evaluation is conducted on six
languages from different language families, namely Czech (Cs), Croatian (Hr),
English (En), German (De), Italian (It), and Spanish (Es).

4.1 Experimental Setup

To create the transformation matrices X ∈ Rm×d and Y ∈ Rm×d, where m =
20, 000 as recommended in [6], we first translated the top 50, 000 words from
the source language into the target language using Google Translate. We then
divided the created bilingual dictionary into train and test subsets, reserving
the latter for later use in the word translation task. For all tested languages we
employed semantic spaces with dimension size d = 300 pre-trained on a corpus
combined from Common Crawl and Wikipedia [15].

All transformations were performed with the recommended settings and with
the previously mentioned dictionary size. However, only the source semantic
space was transformed for the experiments, while the target space remained un-
changed to ensure a fair comparison, except for the MUSE and KCCA methods,
which do not support this constraint. The RT and ORT methods were configured
to use five negative samples, with the parameter γ = 0.275. The VM and MUSE
transformations were run in completely unsupervised mode without a provided
train dictionary. Preprocessing was applied to all methods before transformation,
and the process was repeated after the transformation was completed.
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4.2 Evaluation Metrics

Word Translation In this experiment, words from the source semantic space are
transformed into the target semantic space using a transformation matrix, and
the success of finding correct translations is tested by checking whether the k-
nearest neighbors of the transformed word vector contain an accurate translation.
Two different settings of the number of neighbors were used to evaluate the
accuracy of translations, specifically k = 1 and k = 5. The test part of the
dictionary was used to evaluate results. This experiment was performed for all
language pairs.

Cross-lingual Word Analogies This experiment serves for evaluating cross-lingual
word analogies using a dataset divided into semantic and syntactic categories [7].
The experiment involves predicting a word that completes an analogy based on
relationships between word pairs across languages. To find the target word that
best matches the analogy, vector operations are used. As in the previous case, this
experiment was conducted in two settings (k = 1 and k = 5). This experiment
was performed for all language pairs.

Cross-lingual Word Similarities In this intrinsic experiment, we evaluate cross-
lingual word similarities using three datasets with predefined word pair similari-
ties in multiple languages, namely RG-65 [9], SemEval2017 [8], and WS353 [9].
Each dataset uses a scale to measure the similarity between word pairs, with
scores provided by human annotators. The experiment evaluates the quality of
transformations by comparing the cosine similarity of the word vectors with pro-
vided scores using Pearson’s correlation coefficient, where a higher correlation
means a more accurate transformation.

Topic Classification First extrinsic evaluation involves topic classification us-
ing the RCV2 Reuters dataset [23], where documents are categorized into four
predefined categories in English, German, and Spanish. For classification eval-
uation, we train two different models based on Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM) architectures, which contain sig-
nificantly fewer parameters than transformers. The experiment tests the classifi-
cation accuracy using F-measure. The experiment was divided into four subtasks.
Firstly, the CNN was trained on the transformed source semantic space, and the
classification was evaluated on the unmodified target space. Then, the exper-
iment was repeated with training on the target space and evaluation on the
source space. The same experiments were also performed for the LSTM.

Sentiment Analysis Finally, a sentiment analysis experiment for movie reviews
was conducted using two datasets for Czech and English, divided into positive
and negative sentiments. The datasets, CSFD [17] and IMDB [24], involve 90, 000
and 50, 000 reviews respectively. Similar to the previous classification task, this
experiment employs CNN and LSTM models, with performance evaluated using
the F-measure. As in the previous case, this experiment was divided into four
subtasks.
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5 Results

Table 2 shows the complete results measured in our experiments for all tested
methods for transforming semantic spaces. The numbers in the columns corre-
spond to the measured results for the individual experiments discussed in Sec-
tion 4.2. As shown in the table, the proposed method with the polynomial kernel
achieved the best result among all the transformations tested with an average
score across all task equal to 0.655. The proposed method particularly excels
at the word translation task, where it achieved the highest value. With a value
of 0.452, it outperforms the second-best method by more than three percent,
representing a significant improvement for this category. The second place was
also taken by the proposed method, but this time with the radial basis function
kernel, achieving an average score 0.645, which is comparable to the result of
the ORT method. The KCCA transformation, which also uses kernels, performed
especially well in the topic classification and sentiment analysis tasks, where it
achieved the best scores.

Table 2. Overall results of all experiments. For each experiment, we show the average
across all languages tested in the experiment and across both directions of transforma-
tion. The last column, denoted as AVG, contains the average score across all experi-
ments performed in both directions.

WT WA WS TC SA AVG
LS 0.393 0.559 0.685 0.753 0.786 0.635
OT 0.382 0.569 0.694 0.747 0.784 0.635

CCA 0.385 0.570 0.691 0.752 0.786 0.636
RT 0.363 0.547 0.691 0.716 0.766 0.617

ORT 0.419 0.561 0.727 0.729 0.786 0.644
GEOMM 0.413 0.530 0.732 0.725 0.778 0.636

VM 0.336 0.537 0.698 0.755 0.784 0.622
MUSE 0.281 0.489 0.675 0.748 0.747 0.588
KCCA 0.329 0.517 0.669 0.798 0.811 0.625

KLS+LK 0.393 0.559 0.685 0.756 0.785 0.636
KLS+CSK 0.393 0.559 0.685 0.752 0.783 0.634
KLS+RBF 0.418 0.567 0.706 0.746 0.786 0.645
KLS+PK 0.452 0.563 0.719 0.748 0.793 0.655

The first two kernels, specifically the linear kernel and the cosine similar-
ity kernel, achieved comparable results to the ordinary least squares method,
especially in the first three categories. The results suggests that these kernels
therefore do not introduce any additional information to the transformation
that would improve it in the result. This not only shows that the linear kernel
and the cosine similarity kernel are completely equivalent when using unit nor-
malization of semantic space vectors, but also highlights the importance of an
appropriate choice of preprocessing and postprocessing techniques for semantic
spaces.
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The radial basis function kernel performed overall very well, improving on
the previous two kernels in all measured categories. It also performed the best
of all the kernels tested in the cross-lingual word analogy category. Despite its
popularity and frequent use, however, it has not achieved the best results in
these experiments overall. This may be caused by the overly complex nature of
the kernel, as the feature space of this kernel has infinitely many dimensions,
which may reduce the quality of the resulting transformation.

The best performing kernel was the polynomial kernel. We conducted sev-
eral experiments with different settings of the polynomial degree for this kernel,
among which the kernel with polynomial of degree d = 6 performed the best.
The final scores of the measured experiments gradually decreased with increasing
and decreasing polynomial degree, respectively.

Table 3. Average results of the KLS method over all experiments for all language
pairs.

Cs De En Es Hr It
Cs 1.000 0.478 0.664 0.449 0.424 0.462
De 0.504 1.000 0.699 0.612 0.440 0.535
En 0.681 0.683 1.000 0.696 0.554 0.645
Es 0.459 0.574 0.689 1.000 0.415 0.614
Hr 0.451 0.411 0.510 0.388 1.000 0.402
It 0.484 0.515 0.645 0.623 0.437 1.000

The Table 3 shows the results for each language pair for the KLS method. In
the table we can see that transformations to or from the English semantic space
yield the best results. This is an expected behavior, since English is the most
resource-rich language and thus its semantic spaces are generally of high quality.
To improve the results of individual tasks, it is therefore worth transforming the
semantic space into such a space.

6 Conclusion

In this paper, we introduced a new transformation method, Kernel Least Squares,
which uses kernels to improve the quality of the transformation and the resulting
semantic space. Our findings show that this newly proposed method outperforms
existing transformations that focus only on modifying the source semantic space,
on average across all languages and experiments. It also completely dominates in
the word translation task compared to all tested transformations. At the same
time, Kernel Canonical Correlation Analysis achieved the best scores for the
topic classification and sentiment analysis tasks. Thus, it can be concluded that
kernel transforms are definitely a promising direction.

The main advantage of the proposed method is significantly lower compu-
tational complexity compared to more advanced models based on transformer
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architecture. In addition, the newly proposed method provides opportunities for
further improvement by designing custom kernels that can further optimize the
resulting transformation.
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