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Abstract The rapid development in the field of natural language processing
(NLP) and the increasing complexity of linguistic tasks demand the use of efficient
and effective methods. Cross-lingual linear transformations between semantic
spaces play a crucial role in this domain. However, compared to more advanced
models such as transformers, linear transformations often fall short, especially in
terms of accuracy. It is thus necessary to employ innovative approaches that not
only enhance performance but also maintain low computational complexity.
In this study, we propose Kernel Least Squares (KLS) for linear transformation
between semantic spaces. In our comprehensive analysis involving three intrinsic
and two extrinsic experiments across six languages from three different language
families and a comparative evaluation with nine different linear transformation
methods, we demonstrate the superior performance of KLS. Our results show that
the proposed method significantly improves word translation accuracy, thereby
standing out as the most efficient method for transforming only the source
semantic space.

Keywords: cross-lingual transformations · kernels · linear transformations ·
semantic spaces.

1 Introduction

Semantic spaces are based on the Distributional Hypothesis [18], which states that the
meaning of a word is determined by its surroundings, so words that occur in similar
contexts will also have similar meanings. Based on this hypothesis, several different
semantic models were consequently developed [25,28,5].

The natural next step was the development of methods that would allow semantic
spaces to be transformed between each other, or to create a unified space across several
different languages. We can divide these methods for cross-lingual transformations into
two basic groups, the supervised and unsupervised methods. Supervised methods are
most often based on linear transformations [26,2,13,22,6,19] and only need to build
a dictionary containing a few thousand words [31]. The second group consists of
unsupervised methods [11,21,3] that produce their own dictionary based on internal
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similarities in the given spaces. In this case, the dictionary is created only during the
transformation and is of very high quality compared to the supervised approach.

Cross-lingual semantic spaces find application in many different NLP tasks. For
instance, they can be used for sentiment analysis [27,1], document classification [20], or
syntactic dependency parsing across languages [16]. Recently, more complex models
based on the transformer architecture [30], such as BERT models [12,32], have been
increasingly used for these tasks. However, experiments show that semantic spaces in
certain cases can still achieve comparable quality at significantly lower computational
cost [29].

In this paper, we present the Kernel Least Squares (KLS) method, a new approach
proposed to improve the accuracy and efficiency of cross-lingual semantic transforma-
tions. Unlike traditional methods, the KLS method uses kernel-based techniques to cap-
ture nonlinear relationships in the data, which promises to significantly improve word
translation accuracy and overall performance on a variety of language tasks.

The paper is organized as follows: Section 2 provides a detailed analysis of previous
work in the field of cross-lingual transformations. In Section 3 we describe the kernels
and our proposed transformation KLS. Section 4 presents the experimental setup, while
Section 5 presents the measured results. Finally, we conclude in Section 6.

2 Cross-lingual Transformations between Semantic Spaces

A cross-lingual linear transformation between semantic spaces can be defined as:

Y = Tx→yX, (1)

where matricesX ∈ Rm×d andY ∈ Rm×d are constructed using the dictionaryDx→y

of word pairs (wx, wy), where x is the source language and y is the target language.
Symbol m represents the size of the used dictionary, and d represents the dimension
of the semantic space. In the following text, we present nine different cross-lingual
transformations that were used for comparison in the experiments with our proposed
transformation. They all differ in how they estimate the matrix T.

The first of these transformations, the Least Squares Transformation [26], minimizes
the total squared differences between paired word vectors in two languages aligned
according to a bilingual dictionary. This approach offers an analytical solution through
singular value decomposition (SVD). It uses a transformation matrix derived via the
Moore-Penrose pseudoinverse, which provides a direct estimation for mapping between
semantic spaces.

Orthogonal Transformation [2] extends the least squares approach by enforcing the
orthogonality of the transformation matrix to preserve the angles between the word
vectors of the transformed semantic space. This method also uses SVD to compute
the optimal transformation matrix.

The next method, Canonical Correlation Analysis [13] tries to maximize the
correlation between projected vectors of two sets from different languages, finding
optimal basis vectors for each set. This method uses canonical directions to project
words into a shared semantic space, enhancing multilingual semantic performance.
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Ranking Transformation [22] employs a max-margin hinge loss to reduce hubness
in high-dimensional spaces, optimizing the alignment of words across languages by
adjusting their ranks. The goal is to ensure the correct alignment of words across
languages by optimizing their relative ranks within the semantic space.

Orthogonal Ranking Transformation [6] adds orthogonal constraints to the Ranking
Transformation to address asymmetry problem in cross-lingual mappings. It uses two
max-margin loss functions to optimize transformation matrix towards being nearly
orthogonal, thus preserving the monolingual performance.

Geometry-aware Multilingual Mapping [19] aligns semantic spaces using orthog-
onal transformations and Mahalanobis metrics allowing for more efficient learning of
similarity measures. This method optimizes both the source and target semantic spaces
to achieve more accurate semantic alignment.

Vector Mapping [3] is an unsupervised method that iteratively refines the transfor-
mation matrix without the need for labeled parallel data, which is ideal for resource-
limited languages. It starts by aligning semantic spaces and refines the mapping using
a self-learning algorithm focusing on the internal structures of the semantic spaces.

Multilingual Unsupervised and Supervised Embeddings [11] is an unsupervised
method that uses adversarial training to align semantic spaces without the need for
bilingual dictionaries. It improves the alignment quality by using a discriminator that
tries to distinguish between transformed and real word vectors of the target semantic
space.

Kernel Canonical Correlation Analysis [4] is method based on the previously
mentioned canonical correlation analysis, but enhances it by using kernels. By using
kernels, the nonlinear relationship between two languages can be captured using a linear
transformation. The obtained transformation matrix can thus be used in the same way
as in the previous transformations.

3 Proposed Transformation

In the proposed Kernel Least Squares Transformationmethod, we build on the first pro-
posed transformation, the Least Squares Transformation method, but greatly improve
it by using kernels. The use of kernels allows us to significantly enhance the accuracy
of the transformations by facilitating the capture of complex, high-dimensional rela-
tionships in the data. Since kernels are an essential part of our transformation, we will
briefly introduce them in more detail in the following Section 3.1.

3.1 Kernel Function

The use of a kernel or kernel function κ : S × S → R in the proposed transformation
allows us to avoid the explicit mapping that is necessary for linear learning algorithms
to model a nonlinear function. We define the kernel between any two data inputs ai and
aj from the space S = {a1, . . . , an} as:

κ(ai, aj) = ⟨φ(ai), φ(aj)⟩, (2)
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where φ : S → F represents a mapping to a feature space F , and the function ⟨·, ·⟩
denotes a generalized inner product in the feature space, that can be used for both
vectors and matrices. This transformation of inputs ai and aj into a higher-dimensional
space is essential for identifying latent structures in semantic spaces and enhancing
transformations.

To further explain the use of kernels in the transformation, it is useful to introduce
the concept of kernel matrix orGrammatrix. This n×nmatrix, denoted asK, is created
by evaluating the chosen kernel function for each pair of data points in a given data set.
The entries of the matrix are given as:

Kij = ⟨φ(ai), φ(aj)⟩ = κ(ai, aj). (3)

The kernel matrix is symmetric since Kij = Kji, and contains the pairwise compar-
isons within the space.

Table 1. Kernel types.

Kernel Function Kernel Formula
LK κ(ai, aj) = aT

i aj

PK κ(ai, aj) = (aT
i aj + c)d

RBF κ(ai, aj) = exp
(
−γ∥ai − aj∥22

)
CSK κ(ai, aj) = aT

i aj/(∥ai∥2∥aj∥2)

Several commonly used types of kernels are defined in the Euclidean space Rd.
Choosing the right kernel type is crucial for the final performance of the transformation,
as different kernels can significantly affect the resulting quality of transformed semantic
space and thus the results of individual experiments. In our experiments, we employ four
different types of kernels, namely, Linear Kernel (LK), Polynomial Kernel (PK), Radial
Basis Function Kernel (RBF), and Cosine Similarity Kernel (CSK). The formulas for
their calculation are given in Table 1. Each of these kernels offers distinct advantages
and is key to the success of the semantic space transformation. Most of these kernels,
especially RBF, are commonly encountered in the context of SVM algorithms, which
make extensive use of them to find nonlinear decision boundaries [10]. However, in the
field of NLP we often see polynomial kernels of lower degrees [10,14].

3.2 Kernel Least Squares Transformation

The optimization criterion is defined by Equation 4, whereK denotes the kernel matrix
computed from the input dataX, encapsulating the similarities between data points. The
symbol T̂x→y indicates the optimal transformation matrix.

T̂x→y = argmin
Tx→y

∥∥Y −KTx→y
∥∥2
2
. (4)

If we take the derivative of the equation with respect to T̂x→y , then the analytic solution
is given as T̂x→y = K−1Y. However, in practice, to increase stability and ensure that
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the K matrix is invertible, we add the regularization term λ. The final equation with
this term is then given by:

T̂x→y = (K+ λI)−1Y. (5)

Here λ > 0 is a scalar value that adjusts the regularization strength, and I represents the
identity matrix.

Subsequently, we can transform arbitrary word vector x from source semantic space
to target semantic space with the following equation

ŷ = κ(x,X)T̂x→y. (6)

Essentially, we create a new kernel matrix for the transformed vector x that contains the
calculated similarities of this vector to all vectors from the input data X in the given
feature space. Therefore, this equation can be used to easily transform each word vector
from the source to the target semantic space.

The whole process of the proposed transformation method then involves several key
steps. First, we construct a kernel matrix K with the chosen kernel function κ(xi,xj),
which we evaluate for each pair of vectors xi,xj ∈ X. We then calculate the optimal
transformation matrix T̂x→y that achieves the smallest values of the loss function as
given in Equation 4. In the last step, it is necessary to compute a kernel κ(x,X) between
all x from the source semantic space Sx and matrix X, enabling the transformation
of the word vectors according to Equation 6. After these steps, the transformation is
complete and the semantic space can then be used in any subsequent downstream tasks.

3.3 Preprocessing and Postprocessing

A necessary step to ensure optimal transformation quality is the appropriate configu-
ration and application of preprocessing and postprocessing techniques to the semantic
spaces. Both semantic spaces are therefore first column-wise centered, followed by unit
vector normalization, as shown in [2]. Normalizing the semantic spaces ensures that
the vectors contribute equally to the transformation and their length does not affect the
mapping.

Our research showed that applying the above steps to the source semantic space
after the transformation has been performed can further improve the measured results.
For this reason, in Section 5, we present the results of methods with this setup, i.e.
postprocessing. In the following Section 4, we present the experiments used to evaluate
the quality of the proposed transformation and the measured results.

4 Experiments

In total, we conducted five different experiments, three intrinsic ones, namely Word
Translation (WT), Cross-lingual Word Analogies (WA), and Cross-lingual Word Simi-
larities (WS), and two extrinsic ones, Topic Classification (TC), and Sentiment Analysis
(SA). The individual experiments are described in more detail in Section 4.2. All ex-
periments were performed in both directions, i.e. from the source semantic space to the
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target space and vice versa. This allowed us to more accurately assess the resulting qual-
ity of individual transformations, since some transformations may perform very well in
the first direction and fail in the opposite direction due to the asymmetry problem [6].

Nine additional linear transformations have been tested, including seven super-
vised methods, namely Least Squares Transform (LS), Orthogonal Transform (OT),
Canonical Correlation Analysis (CCA), Ranking Transform (RT), Orthogonal Ranking
Transformation (ORT),Geometry-aware Multilingual Mapping (GEOMM), and Kernel
Canonical Correlation Analysis (KCAA) and two unsupervised methods, namely Vector
Mapping (VM) and Multilingual Unsupervised and Supervised Embeddings (MUSE).
The evaluation is conducted on six languages from different language families, namely
Czech (Cs), Croatian (Hr), English (En), German (De), Italian (It), and Spanish (Es).

4.1 Experimental Setup

To create the transformation matrices X ∈ Rm×d and Y ∈ Rm×d, where m = 20, 000
as recommended in [6], we first translated the top 50, 000 words from the source
language into the target language using Google Translate. We then divided the created
bilingual dictionary into train and test subsets, reserving the latter for later use in the
word translation task. For all tested languages we employed semantic spaces with
dimension size d = 300 pre-trained on a corpus combined from Common Crawl and
Wikipedia [15].

All transformations were performed with the recommended settings and with the
previously mentioned dictionary size. However, only the source semantic space was
transformed for the experiments, while the target space remained unchanged to ensure
a fair comparison, except for the MUSE and KCCA methods, which do not support this
constraint. The RT and ORTmethods were configured to use five negative samples, with
the parameter γ = 0.275. The VM and MUSE transformations were run in completely
unsupervised mode without a provided train dictionary. Preprocessing was applied to
all methods before transformation, and the process was repeated after the transformation
was completed.

4.2 Evaluation Metrics

Word Translation In this experiment, words from the source semantic space are
transformed into the target semantic space using a transformation matrix, and the
success of finding correct translations is tested by checking whether the k-nearest
neighbors of the transformed word vector contain an accurate translation. Two different
settings of the number of neighbors were used to evaluate the accuracy of translations,
specifically k = 1 and k = 5. The test part of the dictionary was used to evaluate results.
This experiment was performed for all language pairs.

Cross-lingual Word Analogies This experiment serves for evaluating cross-lingual
word analogies using a dataset divided into semantic and syntactic categories [7]. The
experiment involves predicting a word that completes an analogy based on relationships
between word pairs across languages. To find the target word that best matches the
analogy, vector operations are used. As in the previous case, this experiment was
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conducted in two settings (k = 1 and k = 5). This experiment was performed for
all language pairs.

Cross-lingual Word Similarities In this intrinsic experiment, we evaluate cross-lingual
word similarities using three datasets with predefined word pair similarities in multiple
languages, namely RG-65 [9], SemEval2017 [8], and WS353 [9]. Each dataset uses
a scale to measure the similarity between word pairs, with scores provided by human
annotators. The experiment evaluates the quality of transformations by comparing the
cosine similarity of the word vectors with provided scores using Pearson’s correlation
coefficient, where a higher correlation means a more accurate transformation.

Topic Classification First extrinsic evaluation involves topic classification using the
RCV2 Reuters dataset [23], where documents are categorized into four predefined
categories in English, German, and Spanish. For classification evaluation, we train
two different models based on Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) architectures, which contain significantly fewer parameters
than transformers. The experiment tests the classification accuracy using F-measure.
The experiment was divided into four subtasks. Firstly, the CNN was trained on
the transformed source semantic space, and the classification was evaluated on the
unmodified target space. Then, the experiment was repeated with training on the target
space and evaluation on the source space. The same experiments were also performed
for the LSTM.

Sentiment Analysis Finally, a sentiment analysis experiment for movie reviews was
conducted using two datasets for Czech and English, divided into positive and negative
sentiments. The datasets, CSFD [17] and IMDB [24], involve 90, 000 and 50, 000
reviews respectively. Similar to the previous classification task, this experiment employs
CNN and LSTM models, with performance evaluated using the F-measure. As in the
previous case, this experiment was divided into four subtasks.

5 Results

Table 2 shows the complete results measured in our experiments for all tested methods
for transforming semantic spaces. The numbers in the columns correspond to the
measured results for the individual experiments discussed in Section 4.2. As shown
in the table, the proposed method with the polynomial kernel achieved the best result
among all the transformations tested with an average score across all task equal to 0.655.
The proposed method particularly excels at the word translation task, where it achieved
the highest value. With a value of 0.452, it outperforms the second-best method by more
than three percent, representing a significant improvement for this category. The second
place was also taken by the proposed method, but this time with the radial basis function
kernel, achieving an average score 0.645, which is comparable to the result of the ORT
method. The KCCA transformation, which also uses kernels, performed especially well
in the topic classification and sentiment analysis tasks, where it achieved the best scores.
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Table 2. Overall results of all experiments. For each experiment, we show the average across all
languages tested in the experiment and across both directions of transformation. The last column,
denoted as AVG, contains the average score across all experiments performed in both directions.

WT WA WS TC SA AVG
LS 0.393 0.559 0.685 0.753 0.786 0.635
OT 0.382 0.569 0.694 0.747 0.784 0.635

CCA 0.385 0.570 0.691 0.752 0.786 0.636
RT 0.363 0.547 0.691 0.716 0.766 0.617

ORT 0.419 0.561 0.727 0.729 0.786 0.644
GEOMM 0.413 0.530 0.732 0.725 0.778 0.636

VM 0.336 0.537 0.698 0.755 0.784 0.622
MUSE 0.281 0.489 0.675 0.748 0.747 0.588
KCCA 0.329 0.517 0.669 0.798 0.811 0.625

KLS+LK 0.393 0.559 0.685 0.756 0.785 0.636
KLS+CSK 0.393 0.559 0.685 0.752 0.783 0.634
KLS+RBF 0.418 0.567 0.706 0.746 0.786 0.645
KLS+PK 0.452 0.563 0.719 0.748 0.793 0.655

The first two kernels, specifically the linear kernel and the cosine similarity kernel,
achieved comparable results to the ordinary least squares method, especially in the first
three categories. The results suggests that these kernels therefore do not introduce any
additional information to the transformation that would improve it in the result. This
not only shows that the linear kernel and the cosine similarity kernel are completely
equivalent when using unit normalization of semantic space vectors, but also highlights
the importance of an appropriate choice of preprocessing and postprocessing techniques
for semantic spaces.

The radial basis function kernel performed overall very well, improving on the
previous two kernels in all measured categories. It also performed the best of all the
kernels tested in the cross-lingual word analogy category. Despite its popularity and
frequent use, however, it has not achieved the best results in these experiments overall.
This may be caused by the overly complex nature of the kernel, as the feature space of
this kernel has infinitely many dimensions, which may reduce the quality of the resulting
transformation.

The best performing kernel was the polynomial kernel. We conducted several
experiments with different settings of the polynomial degree for this kernel, among
which the kernel with polynomial of degree d = 6 performed the best. The final
scores of the measured experiments gradually decreased with increasing and decreasing
polynomial degree, respectively.

The Table 3 shows the results for each language pair for the KLS method. In the
table we can see that transformations to or from the English semantic space yield the best
results. This is an expected behavior, since English is the most resource-rich language
and thus its semantic spaces are generally of high quality. To improve the results of
individual tasks, it is therefore worth transforming the semantic space into such a space.
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Table 3. Average results of the KLS method over all experiments for all language pairs.

Cs De En Es Hr It
Cs 1.000 0.478 0.664 0.449 0.424 0.462
De 0.504 1.000 0.699 0.612 0.440 0.535
En 0.681 0.683 1.000 0.696 0.554 0.645
Es 0.459 0.574 0.689 1.000 0.415 0.614
Hr 0.451 0.411 0.510 0.388 1.000 0.402
It 0.484 0.515 0.645 0.623 0.437 1.000

6 Conclusion

In this paper, we introduced a new transformation method, Kernel Least Squares,
which uses kernels to improve the quality of the transformation and the resulting
semantic space. Our findings show that this newly proposed method outperforms
existing transformations that focus only on modifying the source semantic space, on
average across all languages and experiments. It also completely dominates in the
word translation task compared to all tested transformations. At the same time, Kernel
Canonical Correlation Analysis achieved the best scores for the topic classification and
sentiment analysis tasks. Thus, it can be concluded that kernel transforms are definitely
a promising direction.

The main advantage of the proposed method is significantly lower computational
complexity compared to more advanced models based on transformer architecture. In
addition, the newly proposed method provides opportunities for further improvement by
designing custom kernels that can further optimize the resulting transformation.
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